Skip to content
Snippets Groups Projects
Verified Commit 96d37991 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

update 2024

parent 40bd629a
Branches
No related tags found
No related merge requests found
Checking pipeline status
...@@ -239,374 +239,3 @@ for (int i = 0; i < NX; ++i) { ...@@ -239,374 +239,3 @@ for (int i = 0; i < NX; ++i) {
A faire à la maison comme exercice! A faire à la maison comme exercice!
# And now for something completely different
\Huge La récursivité
# La factorielle: Code impératif
* Code impératif
```C
int factorial(int n) {
int f = 1;
for (int i = 1; i < n; ++i) {
f *= i;
}
return f;
}
```
# Exemple de récursivité (1/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On empile les appels
+----------------+----------------+----------------+----------------+
| | | | `factorial(1)` |
+----------------+----------------+----------------+----------------+
| | | `factorial(2)` | `factorial(2)` |
+----------------+----------------+----------------+----------------+
| | `factorial(3)` | `factorial(3)` | `factorial(3)` |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `factorial(4)` |
+----------------+----------------+----------------+----------------+
# Exemple de récursivité (2/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On dépile les calculs
+----------------+----------------+----------------+----------------+
| `1` | | | |
+----------------+----------------+----------------+----------------+
| `factorial(2)` | `2 * 1 = 2` | | |
+----------------+----------------+----------------+----------------+
| `factorial(3)` | `factorial(3)` | `3 * 2 = 6` | |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `4 * 6 = 24` |
+----------------+----------------+----------------+----------------+
# La récursivité (1/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
# La récursivité (2/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) { // Condition de récursivité
return n * factorial(n - 1);
} else { // Condition d'arrêt
return 1;
}
}
```
# La récursivité (3/4)
## Exercice: trouver l'$\varepsilon$-machine pour un `double`
. . .
Rappelez-vous vous l'avez fait en style **impératif** plus tôt.
. . .
```C
double epsilon_machine(double eps) {
if (1.0 + eps != 1.0) {
return epsilon_machine(eps / 2.0);
} else {
return eps;
}
}
```
# La récursivité (4/4)
\footnotesize
## Exercice: que fait ce code récursif?
```C
void recurse(int n) {
printf("%d ", n % 2);
if (n / 2 != 0) {
recurse(n / 2);
} else {
printf("\n");
}
}
recurse(13);
```
. . .
```C
recurse(13): n = 13, n % 2 = 1, n / 2 = 6,
recurse(6): n = 6, n % 2 = 0, n / 2 = 3,
recurse(3): n = 3, n % 2 = 1, n / 2 = 1,
recurse(1): n = 1, n % 2 = 1, n / 2 = 0.
// affiche: 1 1 0 1
```
. . .
Affiche la représentation binaire d'un nombre!
# Exercice: réusinage et récursivité (1/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15
27 = 15 * 1 + 12
15 = 12 * 1 + 3
12 = 3 * 4 + 0
```
# Exercice: réusinage et récursivité (2/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
# Exercice: réusinage et récursivité (3/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
## Effectuer l'empilage - dépilage
. . .
```C
PGCD(12, 3) | 3
PGCD(15, 12) | 3
PGCD(27, 15) | 3
PGCD(42, 27) | 3
```
# Exercice: réusinage et récursivité (4/4)
## Écrire le code
. . .
```C
int pgcd(int n, int m) {
if (n % m > 0) {
return pgcd(m, n % m);
} else {
return m;
}
}
```
# La suite de Fibonacci (1/2)
## Règle
$$
\mathrm{Fib}(n) = \mathrm{Fib}(n-1) + \mathrm{Fib}(n-2),\quad
\mathrm{Fib}(0)=0,\quad \mathrm{Fib}(1)=1.
$$
## Exercice: écrire la fonction $\mathrm{Fib}$ en récursif et impératif
. . .
## En récursif (6 lignes)
```C
int fib(int n) {
if (n > 1) {
return fib(n - 1) + fib(n - 2);
}
return n;
}
```
# La suite de Fibonacci (2/2)
## Et en impératif (11 lignes)
```C
int fib_imp(int n) {
int fib0 = 1;
int fib1 = 1;
int fib = n == 0 ? 0 : fib1;
for (int i = 2; i < n; ++i) {
fib = fib0 + fib1;
fib0 = fib1;
fib1 = fib;
}
return fib;
}
```
# Exponentiation rapide
\Huge L'exponentiation rapide ou indienne
# Exponentiation rapide ou indienne (1/4)
## But: Calculer $x^n$
* Quel est l'algorithmie le plus simple que vous pouvez imaginer?
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
}
double p = c;
for (int i = 1; i < n; ++i) {
p = p * x; // x *= x
}
return x;
}
```
* Combien de multiplication et d'assignations en fonction de `n`?
. . .
* `n` assignations et `n` multiplications.
# Exponentiation rapide ou indienne (2/4)
* Proposez un algorithme naïf et récursif
. . .
```C
double pow(double x, int n) {
if (n != 0) {
return x * pow(x, n-1);
} else {
return 1;
}
}
```
# Exponentiation rapide ou indienne (3/4)
## Exponentiation rapide ou indienne de $x^n$
* Écrivons $n=\sum_{i=0}^{d-1}b_i 2^i,\ b_i=\{0,1\}$ (écriture binaire sur $d$ bits, avec
$d\sim\log_2(n)$).
*
$$
x^n={x^{2^0}}^{b_0}\cdot {x^{2^1}}^{b_1}\cdots {x^{2^{d-1}}}^{b_{d-1}}.
$$
* On a besoin de $d$ calculs pour les $x^{2^i}$.
* On a besoin de $d$ calculs pour évaluer les produits de tous les termes.
## Combien de calculs en terme de $n$?
. . .
* $n$ est représenté en binaire avec $d$ bits $\Rightarrow d\sim\log_2(n)$.
* il y a $2\log_2(n)\sim \log_2(n)$ calculs.
# Exponentiation rapide ou indienne (4/4)
## Le vrai algorithme
* Si n est pair: calculer $\left(x^{n/2}\cdot x^{n/2}\right)$,
* Si n est impair: calculer $x \cdot \left(x^{(n-1)/2}\right)^2=x\cdot x^{n-1}$.
## Exercice: écrire l'algorithme récursif correspondant
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
} else if (n % 2 == 0) {
return pow(x, n / 2) * pow(x, n/2);
} else {
return x * pow(x, (n-1));
}
}
```
--- ---
title: "Représentation des nombres" title: "Reécursivité, et représentation des nombres"
date: "2024-10-14" date: "2024-10-29"
--- ---
# La récursivité
\Huge La récursivité
# La factorielle: Code impératif
* Code impératif
```C
int factorial(int n) {
int f = 1;
for (int i = 1; i < n; ++i) {
f *= i;
}
return f;
}
```
# Exemple de récursivité (1/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On empile les appels
+----------------+----------------+----------------+----------------+
| | | | `factorial(1)` |
+----------------+----------------+----------------+----------------+
| | | `factorial(2)` | `factorial(2)` |
+----------------+----------------+----------------+----------------+
| | `factorial(3)` | `factorial(3)` | `factorial(3)` |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `factorial(4)` |
+----------------+----------------+----------------+----------------+
# Exemple de récursivité (2/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On dépile les calculs
+----------------+----------------+----------------+----------------+
| `1` | | | |
+----------------+----------------+----------------+----------------+
| `factorial(2)` | `2 * 1 = 2` | | |
+----------------+----------------+----------------+----------------+
| `factorial(3)` | `factorial(3)` | `3 * 2 = 6` | |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `4 * 6 = 24` |
+----------------+----------------+----------------+----------------+
# La récursivité (1/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
# La récursivité (2/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) { // Condition de récursivité
return n * factorial(n - 1);
} else { // Condition d'arrêt
return 1;
}
}
```
# La récursivité (3/4)
## Exercice: trouver l'$\varepsilon$-machine pour un `double`
. . .
Rappelez-vous vous l'avez fait en style **impératif** plus tôt.
. . .
```C
double epsilon_machine(double eps) {
if (1.0 + eps != 1.0) {
return epsilon_machine(eps / 2.0);
} else {
return eps;
}
}
```
# La récursivité (4/4)
\footnotesize
## Exercice: que fait ce code récursif?
```C
void recurse(int n) {
printf("%d ", n % 2);
if (n / 2 != 0) {
recurse(n / 2);
} else {
printf("\n");
}
}
recurse(13);
```
. . .
```C
recurse(13): n = 13, n % 2 = 1, n / 2 = 6,
recurse(6): n = 6, n % 2 = 0, n / 2 = 3,
recurse(3): n = 3, n % 2 = 1, n / 2 = 1,
recurse(1): n = 1, n % 2 = 1, n / 2 = 0.
// affiche: 1 1 0 1
```
. . .
Affiche la représentation binaire d'un nombre!
# Exercice: réusinage et récursivité (1/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15
27 = 15 * 1 + 12
15 = 12 * 1 + 3
12 = 3 * 4 + 0
```
# Exercice: réusinage et récursivité (2/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
# Exercice: réusinage et récursivité (3/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
## Effectuer l'empilage - dépilage
. . .
```C
PGCD(12, 3) | 3
PGCD(15, 12) | 3
PGCD(27, 15) | 3
PGCD(42, 27) | 3
```
# Exercice: réusinage et récursivité (4/4)
## Écrire le code
. . .
```C
int pgcd(int n, int m) {
if (n % m > 0) {
return pgcd(m, n % m);
} else {
return m;
}
}
```
# La suite de Fibonacci (1/2)
## Règle
$$
\mathrm{Fib}(n) = \mathrm{Fib}(n-1) + \mathrm{Fib}(n-2),\quad
\mathrm{Fib}(0)=0,\quad \mathrm{Fib}(1)=1.
$$
## Exercice: écrire la fonction $\mathrm{Fib}$ en récursif et impératif
. . .
## En récursif (6 lignes)
```C
int fib(int n) {
if (n > 1) {
return fib(n - 1) + fib(n - 2);
}
return n;
}
```
# La suite de Fibonacci (2/2)
## Et en impératif (11 lignes)
```C
int fib_imp(int n) {
int fib0 = 1;
int fib1 = 1;
int fib = n == 0 ? 0 : fib1;
for (int i = 2; i < n; ++i) {
fib = fib0 + fib1;
fib0 = fib1;
fib1 = fib;
}
return fib;
}
```
# Exponentiation rapide
\Huge L'exponentiation rapide ou indienne
# Exponentiation rapide ou indienne (1/4)
## But: Calculer $x^n$
* Quel est l'algorithmie le plus simple que vous pouvez imaginer?
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
}
double p = c;
for (int i = 1; i < n; ++i) {
p = p * x; // x *= x
}
return x;
}
```
* Combien de multiplication et d'assignations en fonction de `n`?
. . .
* `n` assignations et `n` multiplications.
# Exponentiation rapide ou indienne (2/4)
* Proposez un algorithme naïf et récursif
. . .
```C
double pow(double x, int n) {
if (n != 0) {
return x * pow(x, n-1);
} else {
return 1;
}
}
```
# Exponentiation rapide ou indienne (3/4)
## Exponentiation rapide ou indienne de $x^n$
* Écrivons $n=\sum_{i=0}^{d-1}b_i 2^i,\ b_i=\{0,1\}$ (écriture binaire sur $d$ bits, avec
$d\sim\log_2(n)$).
*
$$
x^n={x^{2^0}}^{b_0}\cdot {x^{2^1}}^{b_1}\cdots {x^{2^{d-1}}}^{b_{d-1}}.
$$
* On a besoin de $d$ calculs pour les $x^{2^i}$.
* On a besoin de $d$ calculs pour évaluer les produits de tous les termes.
## Combien de calculs en terme de $n$?
. . .
* $n$ est représenté en binaire avec $d$ bits $\Rightarrow d\sim\log_2(n)$.
* il y a $2\log_2(n)\sim \log_2(n)$ calculs.
# Exponentiation rapide ou indienne (4/4)
## Le vrai algorithme
* Si n est pair: calculer $\left(x^{n/2}\cdot x^{n/2}\right)$,
* Si n est impair: calculer $x \cdot \left(x^{(n-1)/2}\right)^2=x\cdot x^{n-1}$.
## Exercice: écrire l'algorithme récursif correspondant
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
} else if (n % 2 == 0) {
return pow(x, n / 2) * pow(x, n/2);
} else {
return x * pow(x, (n-1));
}
}
```
# Représentation des nombres # Représentation des nombres
\Huge La représentation des nombres \Huge La représentation des nombres
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment