Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tp_rsa_python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
flavio.morrone
tp_rsa_python
Commits
a9b9718a
Commit
a9b9718a
authored
2 years ago
by
adrian.spycher
Browse files
Options
Downloads
Patches
Plain Diff
add another methode using the first prime divider
parent
3d7082d0
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
algo.py
+91
-0
91 additions, 0 deletions
algo.py
main.py
+5
-1
5 additions, 1 deletion
main.py
with
96 additions
and
1 deletion
algo.py
+
91
−
0
View file @
a9b9718a
import
math
import
random
def
bachet_bezout
(
a
,
b
):
"""
Does the Bachet-Bezout algorithm on a of b
...
...
@@ -34,6 +35,7 @@ def bachet_bezout(a, b):
return
a
,
u
[
i
-
2
],
v
[
i
-
2
]
def
inverse_modulaire
(
a
,
n
):
"""
Does the inverse modular of a by n, using Bachet-Bezout
...
...
@@ -47,6 +49,7 @@ def inverse_modulaire(a, n):
return
bachet_bezout
(
a
,
n
)[
1
]
def
exponentiation_rapide
(
a
,
exp
,
n
):
"""
Does the quick explanation of a pow x modulo n
...
...
@@ -74,6 +77,7 @@ def exponentiation_rapide(a, exp, n):
return
int
(
r
)
def
is_square
(
a
):
"""
Check if a number is a perfect square, based on the
"
Babylonian algorithm
"
for square root,
from : https://stackoverflow.com/questions/2489435/check-if-a-number-is-a-perfect-square
...
...
@@ -98,6 +102,7 @@ def is_square(a):
return
True
def
fermat_factorization
(
n
):
"""
Does the Fermat
'
s factorization on n,
n = a² - b² = (a + b) * (a - b) = p * q <=> b² = a² - n
...
...
@@ -138,3 +143,89 @@ def decode_msg(M):
"""
return
M
.
to_bytes
((
M
.
bit_length
()
+
7
)
//
8
,
"
little
"
).
decode
(
"
utf-8
"
)
def
miller_rabin_test
(
d
,
n
):
"""
Make the test of Miller Rabin (called for all k trials)
from : https://www.geeksforgeeks.org/primality-test-set-3-miller-rabin/
Args:
d (uint): the exponent d is an odd number such that d*2^r = n-1 for some r >= 1
n (uint): the modulo
Returns:
bool: False if n is composite, True if n is probably prime.
"""
# Pick a random number in [2..n-2], corner cases make sure that n > 4
a
=
2
+
random
.
randint
(
1
,
n
-
4
)
# Compute a^d % n
x
=
exponentiation_rapide
(
a
,
d
,
n
)
if
(
x
==
1
or
x
==
n
-
1
):
return
True
# Keep squaring x while one of the following doesn't happen
# 1. d does not reach n-1
# 2. (x^2) % n is not 1
# 3. (x^2) % n is not n-1
while
(
d
!=
n
-
1
):
x
=
(
x
*
x
)
%
n
d
*=
2
if
(
x
==
1
):
return
False
if
(
x
==
n
-
1
):
return
True
return
False
# Return composite
def
is_prime
(
n
,
k
):
"""
Check if a number is prime using the test ofMiller Rabin.
from : https://www.geeksforgeeks.org/primality-test-set-3-miller-rabin/
Args:
n (uint): the value checked (n must be greater than 4)
k (uint): an input parameter that determines accuracy level, higher value of k indicates more accuracy.
Returns:
bool: True if the number is probably prime, False if n is composite
"""
# Corner cases
if
(
n
<=
1
or
n
==
4
):
return
False
if
(
n
<=
3
):
return
True
# Find r such that n = 2^d * r + 1 for some r >= 1
d
=
n
-
1
while
(
d
%
2
==
0
):
d
//=
2
# Iterate given number of 'k' times
for
i
in
range
(
k
):
if
(
miller_rabin_test
(
d
,
n
)
==
False
):
return
False
return
True
def
get_prime_divider
(
n
):
"""
Get the first prime divider of n, starting with the root of n going to 0
Args:
n (uint): number used
Returns:
uint: the prime divider of n
"""
for
i
in
reversed
(
range
(
math
.
ceil
(
math
.
sqrt
(
n
)))):
if
(
n
%
i
==
0
and
is_prime
(
i
,
4
)):
return
i
return
1
\ No newline at end of file
This diff is collapsed.
Click to expand it.
main.py
+
5
−
1
View file @
a9b9718a
...
...
@@ -33,6 +33,10 @@ def main():
p
=
a
+
b
q
=
a
-
b
# - second methode (sqrt(n) -> 0) -
# p = get_prime_divider(n)
# q = n // p
fi
=
(
p
-
1
)
*
(
q
-
1
)
d
=
inverse_modulaire
(
e
,
fi
)
# get private key
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment