Skip to content
Snippets Groups Projects
Commit 2330805e authored by Florian Burgener's avatar Florian Burgener
Browse files

Prepare message data

parent 73f7a3d3
No related branches found
No related tags found
No related merge requests found
...@@ -6,24 +6,23 @@ from typing import Tuple ...@@ -6,24 +6,23 @@ from typing import Tuple
def unicode_superscripts(value): def unicode_superscripts(value):
exponent_dict = {"0": "", "1": "¹", "2": "²", "3": "³", exponent_dict = {"0": "", "1": "¹", "2": "²", "3": "³", "4": "", "5": "", "6": "", "7": "", "8": "", "9": ""}
"4": "", "5": "", "6": "", "7": "", "8": "", "9": ""}
return ("" if value < 0 else "") + "".join(exponent_dict[x] for x in str(abs(value))) return ("" if value < 0 else "") + "".join(exponent_dict[x] for x in str(abs(value)))
class Polynomial: class Polynomial:
def __init__(self, value=()): def __init__(self, value=()):
if not isinstance(value, tuple): if not isinstance(value, tuple):
raise TypeError("The \"value\" parameter is not of type tuple.") raise TypeError('The "value" parameter is not of type tuple.')
self.value = value self.value = value
def pass_x_throughout(self, x): def pass_x_throughout(self, x):
a = list(self.value) a = list(self.value)
sum = (a[len(a)-1]*x)+a[len(a)-2] sum = (a[len(a) - 1] * x) + a[len(a) - 2]
for i in reversed(range(len(a)-2)): for i in reversed(range(len(a) - 2)):
sum = sum*x+a[i] sum = sum * x + a[i]
return sum return sum
def __add__(self, other): def __add__(self, other):
a = list(self.value) a = list(self.value)
b = list(other.value) b = list(other.value)
...@@ -31,17 +30,17 @@ class Polynomial: ...@@ -31,17 +30,17 @@ class Polynomial:
a_count = len(a) a_count = len(a)
b_count = len(b) b_count = len(b)
if a_count > b_count: if a_count > b_count:
diff = a_count-b_count diff = a_count - b_count
for x in range(diff): for x in range(diff):
b.append(0) b.append(0)
else: else:
diff = b_count-a_count diff = b_count - a_count
for x in range(diff): for x in range(diff):
a.append(0) a.append(0)
c = [0] * len(a) c = [0] * len(a)
for x in range(len(a)): for x in range(len(a)):
c[x] = a[x]+b[x] c[x] = a[x] + b[x]
return Polynomial(tuple(c)) return Polynomial(tuple(c))
...@@ -50,12 +49,12 @@ class Polynomial: ...@@ -50,12 +49,12 @@ class Polynomial:
b = list(other.value) b = list(other.value)
a_count = len(a) a_count = len(a)
b_count = len(b) b_count = len(b)
size = ((a_count - 1) + (b_count - 1) + 1) size = (a_count - 1) + (b_count - 1) + 1
c = [0] * size c = [0] * size
for i in range(a_count): for i in range(a_count):
for j in range(b_count): for j in range(b_count):
c[i+j] += a[i]*b[j] c[i + j] += a[i] * b[j]
return Polynomial(tuple(c)) return Polynomial(tuple(c))
...@@ -94,22 +93,31 @@ class Polynomial: ...@@ -94,22 +93,31 @@ class Polynomial:
def compute_bachet_bezout(a, b): def compute_bachet_bezout(a, b):
r = []
x = []
y = []
q = []
# Init # Init
r.append(a)
x.append(1)
y.append(0)
q.append(0)
r = [a, b] r.append(b)
x = [1, 0] x.append(0)
y = [0, 1] y.append(1)
q = [0, 0] q.append(0)
# Computing # Computing
i = 1 i = 1
while r[i] > 0: while r[i] > 0:
i += 1 i += 1
r.append(r[i-2] % r[i-1]) r.append(r[i - 2] % r[i - 1])
q.append(int(r[i-2] / r[i-1])) q.append(int(r[i - 2] / r[i - 1]))
if r[i] > 0: if r[i] > 0:
x.append(x[i-2]-q[i]*x[i-1]) x.append(x[i - 2] - q[i] * x[i - 1])
y.append(y[i-2]-q[i]*y[i-1]) y.append(y[i - 2] - q[i] * y[i - 1])
return x[-1], y[-1] return x[-1], y[-1]
...@@ -136,53 +144,27 @@ def compute_lagrange_polynomial(points, prime_number): ...@@ -136,53 +144,27 @@ def compute_lagrange_polynomial(points, prime_number):
dividend = Polynomial((-points[k][0], 1)) # x - value dividend = Polynomial((-points[k][0], 1)) # x - value
poly_li *= dividend poly_li *= dividend
divider *= (points[i][0] - points[k][0]) divider *= points[i][0] - points[k][0]
divider = modular_inverse(divider, prime_number) divider = 1 / divider
point_yi = points[i][1] point_yi = points[i][1]
poly_li = poly_li * Polynomial((divider,)) * Polynomial((point_yi,)) poly_li = poly_li * Polynomial((divider,)) * Polynomial((point_yi,))
lagrange += poly_li lagrange += poly_li
lagrange %= prime_number
return lagrange return lagrange
def reed_solomon(points, data_length, last_error_index, prime_number): def reed_solomon(points, data_length, last_error_index, prime_number):
pass return None
def main(): def main():
message = {"data_length": 25, "last_error_index": 23, "prime_number": 401, "points": [67, 101, 38, 109, 101, 115, 133, 118, 103, 128, 62, 118, 97, 156, 116, 77, 49, 56, 86, 112, 171, 105, 176, 116, 115, 183, 30, 315, 368, 29, 352, 54, 333, 198, 139, 234, 321, 92, 5, 272, 396, 265, 397, 386, 229, 153, 276]}
p1 = Polynomial((5, 1, 4)) points = [(x, y) for x, y in enumerate(message["points"])]
p2 = Polynomial((5, 2, 3, 4)) corrected_data = reed_solomon(points, message["data_length"], message["last_error_index"], message["prime_number"])
p3 = p1*p2 print(corrected_data)
# print(p1)
# print(p2)
# print(p3)
# print(p3 % 4)
# print(p3 % 5)
a = 168
b = 68
x, y = compute_bachet_bezout(a, b)
print("Pour les chiffres " + str(a) + " et " + str(b) +
". Les coéfficients de Bachet-Bézout sont : " + str(x) + " et " + str(y))
a = 3
b = 7
print("Inverse modulaire de " + str(a) + " % " +
str(b) + " est " + str(modular_inverse(a, b)))
with open("messages.json") as f:
messages = json.load(f)
print(len(messages))
for message in messages:
points = [(x, y) for x, y in enumerate(message["points"])]
corrected_data = reed_solomon(
points, message["data_length"], message["last_error_index"], message["prime_number"])
print(corrected_data)
break
if __name__ == "__main__": if __name__ == "__main__":
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment