Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
controle4
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ISC2
maths
controle4
Commits
ae2f0f65
Commit
ae2f0f65
authored
10 months ago
by
iliya.saroukha
Browse files
Options
Downloads
Patches
Plain Diff
fix: removed dead code
parent
4beb0a59
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ISC_421_Controle_4_Saroukhanian_Iliya.py
+2
-76
2 additions, 76 deletions
ISC_421_Controle_4_Saroukhanian_Iliya.py
with
2 additions
and
76 deletions
ISC_421_Controle_4_Saroukhanian_Iliya.py
+
2
−
76
View file @
ae2f0f65
...
...
@@ -139,8 +139,6 @@ print()
print
(
f
"
valeur de la fonction en x =
{
SD
.
Taylor_points
}
:
{
[
SD
.
f
(
x
)
for
x
in
SD
.
Taylor_points
]
}
"
)
print
(
f
"
valeur de la fonction en a et b:
{
SD
.
f
(
SD
.
a
),
SD
.
f
(
SD
.
b
)
}
"
)
# print("===============================")
# print(SD.Maximal_derivatives_values)
# Exemple de graphe de la fonction f.
# t = np.linspace(SD.a, SD.b, Nmbre_pts)
...
...
@@ -328,78 +326,6 @@ def plot_errmax_interpolation():
plt
.
show
()
# def caca():
# print(len(SD.Maximal_derivatives_values))
# ex2_taylor_poly()
# plot_taylor_poly()
plot_taylor_poly
()
plot_lagrange_poly
()
# plot_errmax_interpolation()
# def ex3_newton_interpolation_poly():
# # merce l'ami
# def divided_differences(x, y):
# n = len(y)
# coef = np.zeros([n, n])
# coef[:, 0] = y
#
# for j in range(1, n):
# for i in range(n - j):
# coef[i, j] = (coef[i + 1, j - 1] - coef[i, j - 1]) / \
# (x[i + j] - x[i])
#
# return coef[0, :]
#
# def newton_polynomial(x, x_points, coef):
# n = len(coef)
# p = coef[n - 1]
# for k in range(1, n):
# p = coef[n - k - 1] + (x - x_points[n - k - 1]) * p
#
# return p
#
# nb_points = np.linspace(3, 19, 6, dtype=np.uint64)
# fig, axes = plt.subplots(2, 3, figsize=(20, 12))
#
# t = np.linspace(SD.a, SD.b, Nmbre_pts)
#
# for i, ax in enumerate(axes.flat):
# chebyshev_points = np.cos(
# (2 * np.arange(nb_points[i]) + 1) / (2 * nb_points[i]) * np.pi)
#
# chebyshev_points_mapped = 0.5 * \
# (SD.b - SD.a) * (chebyshev_points + 1) + SD.a
#
# interpolate_pts = np.linspace(SD.a, SD.b, nb_points[i])
#
# y_points_uni = SD.f(interpolate_pts)
#
# coef_uni = divided_differences(interpolate_pts, y_points_uni)
# y_plot_uni = newton_polynomial(t, interpolate_pts, coef_uni)
#
# y_points_cheb = SD.f(chebyshev_points_mapped)
#
# coef_cheb = divided_differences(chebyshev_points_mapped, y_points_cheb)
# y_plot_cheb = newton_polynomial(t, chebyshev_points_mapped, coef_cheb)
#
# ax.plot(t, SD.f(t), color='black', label='f')
# ax.plot(t, y_plot_uni, color='red',
# label='$N_{f}$, intervalle équidistants')
# ax.plot(t, y_plot_cheb, color='blue',
# label='$N_{f}$, points de Chebyshev')
# ax.plot(interpolate_pts, SD.f(interpolate_pts), 'o', color='red',
# label='Points équidistants')
# ax.plot(chebyshev_points_mapped[::-1],
# SD.f(chebyshev_points_mapped[::-1]), 'o', color='blue',
# label='Points de Chebyshev')
# ax.set_title(f'n = {nb_points[i]}')
# ax.set_ylim([-1.2, 1.2])
#
# ax.legend()
#
# fig.suptitle(f'Polynôme d\'interpolation de Newton de $f$ avec 2 subdivisions différentes d\'intervalle: Équidistantes (rouge) / Points de Chebyshev (bleu)')
#
# fig.tight_layout()
# plt.show()
plot_errmax_interpolation
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment