Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
orestis.malaspin
math_tech_info
Commits
ace52fac
Commit
ace52fac
authored
7 years ago
by
orestis.malaspin
Committed by
GitHub
7 years ago
Browse files
Options
Downloads
Plain Diff
Merge pull request #8 from claudiosousa/euler_ident
Euler's identity
parents
b81e87b9
0d9ea714
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
cours.tex
+1
-1
1 addition, 1 deletion
cours.tex
with
1 addition
and
1 deletion
cours.tex
+
1
−
1
View file @
ace52fac
...
...
@@ -2713,7 +2713,7 @@ la transformée de Fourier sera périodique, soit
\end{equation}
Nous démontrons cette relation par la définition de la TFTD
\begin{equation}
\fh
(
\omega
+2
\pi
)=
\sum
_{
n=-
\infty
}^
\infty
f[n] e
^{
-i(
\omega
+2
\pi
) n
}
=
\underbrace
{
e
^{
-i2
\pi
n
}}_{
=1
}
\sum
_{
n=-
\infty
}^
\infty
f[n] e
^{
-i
\omega
n
}
=
\fh
(
\omega
).
\fh
(
\omega
+2
\pi
)=
\sum
_{
n=-
\infty
}^
\infty
f[n] e
^{
-i(
\omega
+2
\pi
) n
}
=
\underbrace
{
e
^{
-i2
\pi
}}_{
=1
}
\sum
_{
n=-
\infty
}^
\infty
f[n] e
^{
-i
\omega
n
}
=
\fh
(
\omega
).
\end{equation}
D'une certaine façon nous voyons que nous avons une similarité entre la transformée de Fourier à temps discret et les séries de Fourier.
Cette similarité va devenir plus claire dans ce qui suit.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment