Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
orestis.malaspin
math_tech_info
Commits
def06e7a
Verified
Commit
def06e7a
authored
3 years ago
by
orestis.malaspin
Browse files
Options
Downloads
Plain Diff
merge
parents
a5e8a5f7
465cb44c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examen/fourierConvo2021.md.gpg
+0
-0
0 additions, 0 deletions
examen/fourierConvo2021.md.gpg
exercices/fourier_serie1.md
+11
-10
11 additions, 10 deletions
exercices/fourier_serie1.md
with
11 additions
and
10 deletions
examen/fourierConvo2021.md.gpg
0 → 100644
+
0
−
0
View file @
def06e7a
File added
This diff is collapsed.
Click to expand it.
exercices/fourier_serie1.md
+
11
−
10
View file @
def06e7a
...
...
@@ -52,13 +52,13 @@ Corrigé +.#
On calcule les coefficients de la série de Fourier à l'aide des formules
\b
egin{align}
b
_j&=
\f
rac{2}{T}
\i
nt_0^T
\c
os(j
\o
mega x)f(x){
\m
athrm{d}}x,
\\
a
_j&=
\f
rac{2}{T}
\i
nt_0^T
\s
in(j
\o
mega x)f(x){
\m
athrm{d}}x,
a
_j&=
\f
rac{2}{T}
\i
nt_0^T
\c
os(j
\o
mega x)f(x){
\m
athrm{d}}x,
\\
b
_j&=
\f
rac{2}{T}
\i
nt_0^T
\s
in(j
\o
mega x)f(x){
\m
athrm{d}}x,
\e
nd{align}
où $T=2
\p
i$. On peut donc écrire
\b
egin{align}
b
_j&=
\f
rac{2}{2
\p
i}
\i
nt_{-
\p
i}^
\p
i
\c
os(j x)f(x){
\m
athrm{d}}x,
\\
a
_j&=
\f
rac{2}{2
\p
i}
\i
nt_{-
\p
i}^
\p
i
\s
in(j x)f(x){
\m
athrm{d}}x.
a
_j&=
\f
rac{2}{2
\p
i}
\i
nt_{-
\p
i}^
\p
i
\c
os(j x)f(x){
\m
athrm{d}}x,
\\
b
_j&=
\f
rac{2}{2
\p
i}
\i
nt_{-
\p
i}^
\p
i
\s
in(j x)f(x){
\m
athrm{d}}x.
\e
nd{align}
Comme $f(x)$ est paire, on a que les coefficients $a_j$ sont tous nuls.
Il nous reste à calculer
...
...
@@ -109,7 +109,7 @@ Exercice +.#
Développer en série de Fourier la fonction $2
\p
i$-périodique suivante
\b
egin{equation}
f(x)=
\s
in
\l
eft(
\f
rac{x}{2}
\r
ight),
\
x
\i
n[
0,2
\p
i).
f(x)=
\s
in
\l
eft(
\f
rac{x}{2}
\r
ight),
\
x
\i
n[
-
\p
i,
\p
i).
\e
nd{equation}
Corrigé +.#
...
...
@@ -130,7 +130,7 @@ Exercice +.#
Développer en série de Fourier la fonction $2
\p
i$-périodique suivante
\b
egin{equation}
f(x)=
\c
os
\l
eft(
\f
rac{x}{2}
\r
ight),
\
x
\i
n[
0,2
\p
i).
f(x)=
\c
os
\l
eft(
\f
rac{x}{2}
\r
ight),
\
x
\i
n[
-
\p
i,
\p
i).
\e
nd{equation}
Corrigé +.#
...
...
@@ -216,7 +216,7 @@ Corrigé +.#
En utilisant la formule
$$
f[n]=
\s
um_{k=0}^{N-1}
\h
at f[
n
]e^{2
\p
i ink/N},
f[n]=
\
f
rac{1}{N}
\
s
um_{k=0}^{N-1}
\h
at f[
k
]e^{2
\p
i ink/N},
$$
on peut calculer la TFD de $
\h
at f=
\{
2, -1-i, 0, -1+i
\}
$ avec $N=4$.
On obtient donc
...
...
@@ -225,7 +225,8 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0.
$$
Et ainsi de suite on obtient
\b
egin{align}
f[1]&=
\h
at f[0]+
\h
at f[1]e^{
\p
i i/2}+
\h
at f[2]e^{
\p
i i}+
\h
at f[3]e^{3
\p
i i/2}=2+i(-1-i)+(-i)(-1+i)=4,
\\
\h
at f[2]&=f[0]+f[1]e^{
\p
i i}+f[2]e^{2
\p
i i}+f[3]e^{3
\p
i i}=2+(-1)(-1-i)-1(-1+i)=4,
\\
\h
at f[3]&=f[0]+f[1]e^{3
\p
i i/2}+f[2]e^{3
\p
i i}+f[3]e^{9
\p
i i/2}=2-i(-1-i)+i(-1+i)=0.
f[1]&=
\f
rac{1}{4}(
\h
at f[0]+
\h
at f[1]e^{
\p
i i/2}+
\h
at f[2]e^{
\p
i i}+
\h
at
f[3]e^{3
\p
i i/2})=
\f
rac{1}{4}(2+i(-1-i)+(-i)(-1+i))=1,
\\
\h
at f[2]&=
\f
rac{1}{4}(f[0]+f[1]e^{
\p
i i}+f[2]e^{2
\p
i i}+f[3]e^{3
\p
i i})=
\f
rac{1}{4}(2+(-1)(-1-i)-1(-1+i))=1,
\\
\h
at f[3]&=
\f
rac{1}{4}(f[0]+f[1]e^{3
\p
i i/2}+f[2]e^{3
\p
i i}+f[3]e^{9
\p
i i/2})=
\f
rac{1}{4}(2-i(-1-i)+i(-1+i))=0.
\e
nd{align}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment