Skip to content
Snippets Groups Projects
Commit 5da1bcd2 authored by xavier.perret's avatar xavier.perret
Browse files

Update exercices/fourier_serie1.md

parent d9b4730b
Branches master
No related tags found
No related merge requests found
Pipeline #14087 failed
......@@ -52,13 +52,13 @@ Corrigé +.#
On calcule les coefficients de la série de Fourier à l'aide des formules
\begin{align}
b_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x,
a_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\
b_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x,
\end{align}
où $T=2\pi$. On peut donc écrire
\begin{align}
b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x.
a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\
b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x.
\end{align}
Comme $f(x)$ est paire, on a que les coefficients $a_j$ sont tous nuls.
Il nous reste à calculer
......@@ -228,4 +228,4 @@ Et ainsi de suite on obtient
f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\
\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\
\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0.
\end{align}
\ No newline at end of file
\end{align}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment