Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • algorithmique/cours
  • aurelien.boyer/cours
  • jeremy.meissner/cours
  • radhwan.hassine/cours
  • yassin.elhakoun/cours-algo
  • gaspard.legouic/cours
  • joachim.bach/cours
  • gabriel.marinoja/algo-cours
  • loic.lavorel/cours
  • iliya.saroukha/cours
  • costanti.volta/cours
  • jacquesw.ndoumben/cours
12 results
Select Git revision
Show changes
Commits on Source (171)
Showing with 10598 additions and 11 deletions
...@@ -7,8 +7,11 @@ Merci aux contributeurs suivants pour leurs efforts (dans un ordre alphabétique ...@@ -7,8 +7,11 @@ Merci aux contributeurs suivants pour leurs efforts (dans un ordre alphabétique
* A. Boyer * A. Boyer
* M. Corboz * M. Corboz
* M. Divià * M. Divià
* Y. El Hakouni
* A. Escribano * A. Escribano
* P. Kunzli * P. Kunzli
* G. Legouic * G. Legouic
* G. Marino Jarrin * G. Marino Jarrin
* H. Radhwan
* I. Saroukhanian * I. Saroukhanian
* C. Volta
---
Language: Cpp
# BasedOnStyle: Google
AccessModifierOffset: -4
AlignAfterOpenBracket: AlwaysBreak
AlignConsecutiveAssignments: None
AlignConsecutiveBitFields: None
AlignConsecutiveDeclarations: None
AlignConsecutiveMacros: true
AlignEscapedNewlines: Left
AlignOperands: Align
AlignTrailingComments: true
AllowAllArgumentsOnNextLine: true
AllowAllConstructorInitializersOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortEnumsOnASingleLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Empty
AllowShortLambdasOnASingleLine: Empty
AllowShortIfStatementsOnASingleLine: Never
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: Yes
BinPackArguments: true
BinPackParameters: true
BitFieldColonSpacing: Both
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: MultiLine
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeBraces: Custom
BreakBeforeInheritanceComma: false
BreakInheritanceList: AfterColon
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: AfterColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 100
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DeriveLineEnding: false
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<ext/.*\.h>'
Priority: 2
SortPriority: 0
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentCaseLabels: false
IndentCaseBlocks: false
IndentGotoLabels: false
IndentPPDirectives: None
IndentExternBlock: AfterExternBlock
IndentWidth: 4
IndentWrappedFunctionNames: true
InsertTrailingCommas: None
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Never
ObjCBlockIndentWidth: 2
ObjCBreakBeforeNestedBlockParam: true
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Right
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
BasedOnStyle: google
- Language: TextProto
Delimiters:
- pb
- PB
- proto
- PROTO
EnclosingFunctions:
- EqualsProto
- EquivToProto
- PARSE_PARTIAL_TEXT_PROTO
- PARSE_TEST_PROTO
- PARSE_TEXT_PROTO
- ParseTextOrDie
- ParseTextProtoOrDie
- ParseTestProto
- ParsePartialTestProto
CanonicalDelimiter: ''
BasedOnStyle: google
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: false
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: true
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: true
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInContainerLiterals: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: Auto
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TabWidth: 4
UseCRLF: false
UseTab: Never
WhitespaceSensitiveMacros:
- STRINGIZE
- PP_STRINGIZE
- BOOST_PP_STRINGIZE
...
*.pdf diagram*.pdf
*.err cours*.pdf
*.markdown intro.pdf
*.html mermaid-filter.err
index.md
.puppeteer.json .puppeteer.json
...@@ -18,14 +18,15 @@ all: puppeteer $(PDF) ...@@ -18,14 +18,15 @@ all: puppeteer $(PDF)
# all: puppeteer $(PDF) $(HTML) # La cible par défaut (all) exécute les cibles %.pdf # all: puppeteer $(PDF) $(HTML) # La cible par défaut (all) exécute les cibles %.pdf
docker: docker-compose.yml docker: docker-compose.yml
docker-compose run slides docker compose run slides
docker_clean: docker-compose.yml docker_clean: docker-compose.yml
docker-compose run slides clean docker compose run slides clean
puppeteer: puppeteer:
@echo "Setting chromium to $(CHROMIUM) for puppeteer" @echo "Setting chromium to $(CHROMIUM) for puppeteer"
@echo -e "{\n\"executablePath\":" \"$(CHROMIUM)\" ",\n\"args\": [\"--no-sandbox\"]\n}" > .puppeteer.json @echo -e "{\n\"executablePath\":" \"$(CHROMIUM)\" ",\n\"args\": [\"--no-sandbox\"]\n}" > .puppeteer.json
# @echo "{\n\"executablePath\":" \"$(CHROMIUM)\" ",\n\"args\": [\"--no-sandbox\"]\n}" > .puppeteer.json
index.md: gen_index.sh index.md: gen_index.sh
$(shell ./gen_index.sh) $(shell ./gen_index.sh)
......
--- ---
title: "Introduction aux algorithmes" title: "Introduction aux algorithmes I"
date: "2023-09-19" date: "2024-09-16"
--- ---
# Qu'est-ce qu'un algorithme? # Qu'est-ce qu'un algorithme?
......
---
title: "Backtracking et piles"
date: "2024-12-02"
---
# Le problème des 8-reines
\Huge Le problème des 8-reines
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/5)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/5)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
rien nbr_solutions(board, column, count)
pour chaque ligne
si la case libre
si column < n - 1
copier board dans un "new" board,
y poser une reine
et mettre à jour ce "new" board
nbr_solutions(new_board, column+1, count)
sinon
on a posé la n-ème et on a gagné
count += 1
```
# Le code du problème des 8 reines (3/5)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
rien placer_devant(board, ligne, colonne)
board est occupé à ligne/colonne
toutes les cases des colonnes
suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/5)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/5)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void placer_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
# Les piles
\Huge Les piles
# Les piles (1/5)
## Qu'est-ce donc?
* Structure de données abstraite...
. . .
* de type `LIFO` (*Last in first out*).
![Une pile où on ajoute A, puis B avant de les retirer. Source:
[Wikipedia](https://upload.wikimedia.org/wikipedia/commons/e/e1/Stack_(data_structure)_LIFO.svg)](figs/Stack.svg){width=70%}
## Des exemples de la vraie vie
. . .
* Pile d'assiettes, de livres, ...
* Adresses visitées par un navigateur web.
* Les calculatrices du passé (en polonaise inverse).
* Les boutons *undo* de vos éditeurs de texte (aka *u* dans vim).
# Les piles (2/5)
## Fonctionnalités
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retourner.
3. Pile vide? (is_empty?).
. . .
4. Jeter un œil (peek): retourner l'élément du sommet de la pile (sans le dépiler).
5. Nombre d'éléments (length).
## Comment faire les 4, 5 à partir de 1 à 3?
. . .
4. Dépiler l'élément, le copier, puis l'empiler à nouveau.
5. Dépiler jusqu'à ce que la pile soit vide, puis empiler à nouveau.
. . .
## Existe en deux goûts
* Pile avec ou sans limite de capacité (à concurrence de la taille de la
mémoire).
# Les piles (3/5)
## Implémentation
* Jusqu'ici on n'a pas du tout parlé d'implémentation (d'où le nom de structure
abstraite).
* Pas de choix unique d'implémentation.
## Quelle structure de données allons nous utiliser?
. . .
Et oui vous avez deviné: un tableau!
## La structure: de quoi avons-nous besoin (pile de taille fixe)?
. . .
```C
#define MAX_CAPACITY 500
typedef struct _stack {
int data[MAX_CAPACITY]; // les données
int top; // indice du sommet
} stack;
```
# Les piles (4/5)
## Initialisation
. . .
```C
void stack_init(stack *s) {
s->top = -1;
}
```
## Est vide?
. . .
```C
bool stack_is_empty(stack s) {
return s.top == -1;
}
```
## Empiler (ajouter un élément au sommet)
. . .
```C
void stack_push(stack *s, int val) {
s->top += 1;
s->data[s->top] = val;
}
```
# Les piles (5/5)
## Dépiler (enlever l'élément du sommet)
. . .
```C
int stack_pop(stack *s) {
s->top -= 1;
return s->data[s->top+1];
}
```
## Jeter un oeil (regarder le sommet)
. . .
```C
int stack_peek(stack s) {
return s.data[s.top];
}
```
## Quelle est la complexité de ces opérations?
. . .
## Voyez-vous des problèmes potentiels avec cette implémentation?
. . .
* Empiler avec une pile pleine.
* Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Les assertions
\Huge Les assertions
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
- **Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
# La pile dynamique
## Comment modifier le code précédent pour avoir une taille dynamique?
. . .
```C
// alloue une zone mémoire de size octets
void *malloc(size_t size);
// change la taille allouée à size octets (contiguïté garantie)
void *realloc(void *ptr, size_t size);
```
. . .
**Attention:** `malloc` sert à allouer un espace mémoire (**pas** de notion de tableau).
## Et maintenant?
. . .
```C
void stack_create(stack *s); // crée une pile avec une taille par défaut
// vérifie si la pile est pleine et réalloue si besoin
void stack_push(stack *s, int val);
// vérifie si la pile est vide/trop grande
// et réalloue si besoin
void stack_pop(stack *s, int *ret);
```
. . .
## Faisons s'implémentation ensemble
---
title: "Applications des piles, listes chaînées et files d'attente"
date: "2024-12-09"
---
# Rappel: les piles
## Qu'est-ce donc?
. . .
* Structure de données abstraite de type LIFO
## Quelles fonctionnalités?
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retourner.
3. Pile vide? (is_empty?).
# Le tri à deux piles
\Huge Le tri à deux piles
# Le tri à deux piles (1/3)
## Cas pratique
![Un exemple de tri à deux piles](figs/tri_piles.svg){width=70%}
# Le tri à deux piles (2/3)
## Exercice: formaliser l'algorithme
. . .
## Algorithme de tri nécessitant 2 piles (G, D)
Soit `tab` le tableau à trier:
```C
pour i de 0 à N-1
tant que (tab[i] > que le sommet de G)
dépiler G dans D
tant que (tab[i] < que le sommet de D)
dépiler de D dans G
empiler tab[i] sur G
dépiler tout D dans G
dépiler tout G dans tab
```
# Le tri à deux piles (3/3)
## Exercice: trier le tableau `[2, 10, 5, 20, 15]`
```C
```
# La Calculatrice
\Huge La Calculatrice
# La calculatrice (1/8)
## Vocabulaire
```C
2 + 3 = 2 3 +,
```
`2` et `3` sont les *opérandes*, `+` l'*opérateur*.
. . .
## La notation infixe
```C
2 * (3 + 2) - 4 = 6.
```
## La notation postfixe
```C
2 3 2 + * 4 - = 6.
```
## Exercice: écrire `2 * 3 * 4 + 2` en notation `postfixe`
. . .
```C
2 3 4 * * 2 + = (2 * (3 * 4)) + 2.
```
# La calculatrice (2/8)
## De infixe à post-fixe
* Une *pile* est utilisée pour stocker *opérateurs* et *parenthèses*.
* Les opérateurs ont des *priorités* différentes.
```C
^ : priorité 3
* / : priorité 2
+ - : priorité 1
( ) : priorité 0 // pas un opérateur mais bon
```
# La calculatrice (3/8)
## De infixe à post-fixe: algorithme
* On lit l'expression infixe de gauche à droite.
* On examine le prochain caractère de l'expression infixe:
* Si opérande, le placer dans l'expression du résultat.
* Si parenthèse le mettre dans la pile (priorité 0).
* Si opérateur, comparer sa priorité avec celui du sommet de la pile:
* Si sa priorité est plus élevée, empiler.
* Sinon dépiler l'opérateur de la pile dans l'expression du résultat et
recommencer jusqu'à apparition d'un opérateur de priorité plus faible
au sommet de la pile (ou pile vide).
* Si parenthèse fermée, dépiler les opérateurs du sommet de la pile et les
placer dans l'expression du résultat, jusqu'à ce qu'une parenthèse
ouverte apparaisse au sommet, dépiler également la parenthèse.
* Si il n'y a pas de caractère dans l'expression dépiler tous les
opérateurs dans le résultat.
# La calculatrice (4/8)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
(A*B)/D-F)/(G+H) Vide ( 0
A*B)/D-F)/(G+H) Vide (( 0
*B)/D-F)/(G+H) A (( 0
B)/D-F)/(G+H) A ((* 2
)/D-F)/(G+H) AB ((* 2
/D-F)/(G+H) AB* ( 0
D-F)/(G+H) AB* (/ 2
-F)/(G+H) AB*D (/ 2
F)/(G+H) AB*D/ (- 1
)/(G+H) AB*D/F (- 1
/(G+H) AB*D/F- Vide Néant
```
# La calculatrice (5/8)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
--------------------------------------------------------
/(G+H) AB*D/F- Vide Néant
(G+H) AB*D/F- / 2
G+H) AB*D/F- /( 0
+H) AB*D/F-G /( 0
H) AB*D/F-G /(+ 1
) AB*D/F-GH /(+ 1
Vide AB*D/F-GH+ / 2
Vide AB*D/F-GH+/ Vide Néant
```
# La calculatrice (6/8)
\footnotesize
## Exercice: écrire le code et le poster sur matrix
* Quelle est la signature de la fonction?
. . .
* Une sorte de corrigé:
```C
char* infix_to_postfix(char* infix) { // init and alloc stack and postfix
for (size_t i = 0; i < strlen(infix); ++i) {
if (is_operand(infix[i])) {
// we just add operands in the new postfix string
} else if (infix[i] == '(') {
// we push opening parenthesis into the stack
} else if (infix[i] == ')') {
// we pop everything into the postfix
} else if (is_operator(infix[i])) {
// this is an operator. We add it to the postfix based
// on the priority of what is already in the stack and push it
}
}
// pop all the operators from the s at the end of postfix
// and end the postfix with `\0`
return postfix;
}
```
# La calculatrice (7/8)
## Évaluation d'expression postfixe: algorithme
* Chaque *opérateur* porte sur les deux opérandes qui le précèdent.
* Le *résultat d'une opération* est un nouvel *opérande* qui est remis au
sommet de la pile.
## Exemple
```C
2 3 4 + * 5 - = ?
```
* On parcours de gauche à droite:
```C
Caractère lu Pile opérandes
2 2
3 2, 3
4 2, 3, 4
+ 2, (3 + 4)
* 2 * 7
5 14, 5
- 14 - 5 = 9
```
# La calculatrice (8/8)
## Évaluation d'expression postfixe: algorithme
1. La valeur d'un opérande est *toujours* empilée.
2. L'opérateur s'applique *toujours* au 2 opérandes au sommet.
3. Le résultat est remis au sommet.
## Exercice: écrire l'algorithme en C (et poster sur matrix)
. . .
```C
double evaluate(char* postfix) {
// declare and initialize stack s
for (size_t i = 0; i < strlen(postfix); ++i) {
if (is_operand(postfix[i])) {
stack_push(&s, postfix[i]);
} else if (is_operator(postfix[i])) {
double rhs = stack_pop(&s);
double lhs = stack_pop(&s);
stack_push(&s, op(postfix[i], lhs, rhs));
}
}
return stack_pop(&s);
}
```
# Liste chaînée et pile
\Huge Liste chaînée et pile
# La liste chaînée et pile (1/6)
## Structure de données
* Chaque élément de la liste contient:
1. une valeur,
2. un pointeur vers le prochain élément.
* La pile est un pointeur vers le premier élément.
![Un exemple de liste chaînée.](figs/Singly-linked-list.svg){width=80%}
# La liste chaînée et pile (2/6)
## Une pile-liste-chaînée
```C
typedef struct _element {
int data;
struct _element *next;
} element;
typedef struct _stack {
element *top;
} stack;
```
## Fonctionnalités?
. . .
```C
void stack_create(stack *s); // s->top = NULL;
void stack_destroy(stack *s);
void stack_push(stack *s, int val);
void stack_pop(stack *s, int *val);
void stack_peek(stack s, int *val);
bool stack_is_empty(stack s); // return NULL == s.top;
```
# La liste chaînée et pile (3/6)
## Empiler? (faire un dessin)
. . .
```C
```
## Empiler? (le code ensemble)
. . .
```C
void stack_push(stack *s, int val) {
element *elem = malloc(sizeof(*elem));
elem->data = val;
elem->next = s->top;
s->top = elem;
}
```
# La liste chaînée et pile (4/6)
## Jeter un oeil? (faire un dessin)
. . .
```C
```
## Jeter un oeil? (le code ensemble)
. . .
```C
void stack_peek(stack s, int *val) {
*val = s.top->val;
}
```
# La liste chaînée et pile (5/6)
## Dépiler? (faire un dessin)
. . .
```C
```
## Dépiler? (le code ensemble)
. . .
```C
void stack_pop(stack *s, int *val) {
stack_peek(*s, val);
element *tmp = s->top;
s->top = s->top->next;
free(tmp);
}
```
# La liste chaînée et pile (6/6)
## Détruire? (faire un dessin)
. . .
```C
```
## Détruire? (le code ensemble)
. . .
```C
void stack_destroy(stack *s) {
while (!stack_is_empty(*s)) {
int val;
stack_pop(s, &val);
}
}
```
---
title: "File d'attente, liste triée, liste doublement chaînée"
date: "2024-12-16"
---
# La file d'attente
\Huge La file d'attente
# La file d'attente (1/2)
* Structure de données abstraite permettant le stockage d'éléments.
* *FIFO*: First In First Out, ou première entrée première sortie.
* Analogue de la vie "réelle"":
* File à un guichet,
* Serveur d'impressions,
* Mémoire tampon, ...
## Fonctionnalités
. . .
* Enfiler: ajouter un élément à la fin de la file.
* Défiler: extraire un élément au devant de la file.
* Tester si la file est vide.
. . .
* Lire l'élément de la fin de la file.
* Lire l'élément du devant de la file.
* Créer une file vide.
* Détruire une file.
# La file d'attente (2/2)
\footnotesize
## Implémentation possible
* La structure de file, contient un pointeur vers la tête et un autre vers le début de la file.
* Entre les deux, les éléments sont stockés dans une liste chaînée.
![Illustration d'une file d'attente.](figs/fig_queue_representation.png){width=80%}
## Structure de données en C?
. . .
```C
typedef struct _element { // Elément de liste
int data;
struct _element* next;
} element;
typedef struct _queue { // File d'attente
element* head; // tête de file d'attente
element* tail; // queue de file d'attente
} queue;
```
# Fonctionnalités d'une file d'attente
## Création et consultations
. . .
```C
void queue_init(queue *fa); // head = tail = NULL
bool queue_is_empty(queue fa); // fa.head == fa.tail == NULL
int queue_tail(queue fa); // return fa.tail->data
int queue_head(queue fa); // return fa.head->data
```
## Manipulations et destruction
. . .
```C
void queue_enqueue(queue *fa, int val);
// adds an element before the tail
int queue_dequeue(queue *fa);
// removes the head and returns stored value
void queue_destroy(queue *fa);
// dequeues everything into oblivion
```
# Enfilage
## Deux cas différents
1. La file est vide (faire un dessin):
. . .
![Insertion dans une file d'attente vide.](./figs/fig_empty_queue_insert.png){width=40%}
2. La file n'est pas vide (faire un dessin):
. . .
![Insertion dans une file d'attente non-vide.](./figs/fig_non_empty_queue_insert.png){width=70%}
# Enfilage
## Live (implémentation)
. . .
```C
void queue_enqueue(queue *fa, int val) {
element* elmt = malloc(sizeof(*elmt));
elmt->data = val;
elmt->next = NULL;
if (queue_is_empty(*fa)) {
fa->head = elmt;
fa->tail = elmt;
} else {
fa->tail->next = elmt;
fa->tail = elmt;
}
}
```
# Défilage
## Trois cas différents
1. La file a plus d'un élément (faire un dessin):
. . .
![Extraction d'une file d'attente](./figs/fig_queue_extract.png){width=80%}
2. La file un seul élément (faire un dessin):
. . .
![Extraction d'une file d'attente de longueur 1.](./figs/fig_queue_extract_one.svg){width=25%}
3. La file est vide (problème)
# Défilage
## Live (implémentation)
. . .
```C
int queue_dequeue(queue *fa) {
element* elmt = fa->head;
int val = elmt->data;
fa->head = fa->head->next;
free(elmt);
if (NULL == fa->head) {
fa->tail = NULL;
}
return val;
}
```
. . .
## Problème avec cette implémentation?
# Destruction
## Comment on faire la désallocation?
. . .
On défile jusqu'à ce que la file soit vide!
# Complexité
## Quelle est la complexité de
* Enfiler?
. . .
* Défiler?
. . .
* Détruire?
. . .
* Est vide?
# Implémentation alternative
## Comment implémenter la file autrement?
. . .
* Données stockées dans un tableau;
* Tableau de taille connue à la compilation ou pas (réallouable);
* `tail` serait un indice du tableau;
* `capacity` serait la capacité maximale;
* On *enfile* "au bout" du tableau, au défile au début (indice `0`).
. . .
## Structure de données
```C
typedef struct _queue {
int *data;
int tail, capacity;
} queue;
```
# File basée sur un tableau
* Initialisation?
. . .
```C
```
* Est vide?
. . .
```C
```
* Enfiler?
. . .
```C
```
* Défiler?
. . .
```C
```
# Complexité
## Quelle est les complexités de
* Initialisation?
. . .
```C
```
* Est vide?
. . .
```C
```
* Enfiler?
. . .
```C
```
* Défiler?
. . .
```C
```
# Une file plus efficace
## Comment faire une file plus efficace?
* Où est-ce que ça coince?
. . .
* Défiler est particulièrement lent $\mathcal{O}(N)$.
## Solution?
. . .
* Utiliser un indice séparé pour `head`.
```C
typedef struct _queue {
int *data;
int head, tail, capacity;
} queue;
```
# Une file plus efficace (implémentation)
## Enfilage
\footnotesize
```C
void queue_enqueue(queue *fa, int val) {
if ((fa->head == 0 && fa->tail == fa->capacity-1) ||
(fa->tail == (fa->head-1) % (fa->capacity-1))) {
return; // queue is full
}
if (fa->head == -1) { // queue was empty
fa->head = fa->tail = 0;
fa->data[fa->tail] = val;
} else if (fa->tail == fa->capacity-1 && fa->head != 0) {
// the tail reached the end of the array
fa->tail = 0;
fa->data[fa->tail] = val;
} else {
// nothing particular
fa->tail += 1;
fa->data[fa->tail] = val;
}
}
```
# Une file plus efficace (implémentation)
## Défilage
```C
void queue_dequeue(queue *fa, int *val) {
if (queue_is_empty(*fa)) {
return; // queue is empty
}
*val = fa->data[fa->head];
if (fa->head == fa->tail) { // that was the last element
fa->head = fa->tail = -1;
} else if (fa->head == fa->capacity-1) {
fa->head = 0;
} else {
fa->head += 1;
}
}
```
# Listes triées
\Huge Les listes triées
# Les listes triées
Une liste chaînée triée est:
* une liste chaînée
* dont les éléments sont insérés dans l'ordre.
![Exemple de liste triée.](./figs/sorted_list_example.svg)
. . .
* L'insertion est faite telle que l'ordre est maintenu.
## Quelle structure de données?
```C
```
# Les listes triées
## Quel but?
* Permet de retrouver rapidement un élément.
* Utile pour la recherche de plus court chemin dans des graphes.
* Ordonnancement de processus par degré de priorité.
## Comment?
* Les implémentations les plus efficaces se basent sur les tableaux.
* Possibles aussi avec des listes chaînées.
# Les listes triées
\footnotesize
## Quelle structure de données dans notre cas?
Une liste chaînée bien sûr (oui c'est pour vous entraîner)!
```C
typedef struct _element { // chaque élément
int data;
struct _element *next;
} element;
typedef element* sorted_list; // la liste
```
## Fonctionnalités
```C
// insertion de val
sorted_list sorted_list_push(sorted_list list, int val);
// la liste est-elle vide?
bool sorted_list_is_empty(sorted_list list); // list == NULL
// extraction de val (il disparaît)
sorted_list sorted_list_extract(sorted_list list, int val);
// rechercher un élément et le retourner
element* sorted_list_search(sorted_list list, int val);
```
# L'insertion (1/3)
## Trois cas
1. La liste est vide.
. . .
![Insertion dans une liste vide, `list == NULL`.](figs/sorted_list_insert_one.svg){width=30%}
. . .
```C
sorted_list sorted_list_push(sorted_list list, int val) {
if (sorted_list_is_empty(list)) {
list = malloc(sizeof(*list));
list->data = val;
list->next = NULL;
return list;
}
}
```
# L'insertion (2/3)
2. L'insertion se fait en première position.
. . .
![Insertion en tête de liste, `list->data >=
val`.](figs/sorted_list_insert_first.svg){width=80%}
. . .
```C
sorted_list sorted_list_push(sorted_list list, int val) {
if (list->data >= val) {
element *tmp = malloc(sizeof(*tmp));
tmp->data = val;
tmp->next = list;
list = tmp;
return list;
}
}
```
# L'insertion (3/3)
3. L'insertion se fait sur une autre position que la première.
. . .
![Insertion sur une autre position, list->data < val.](figs/sorted_list_insert_any.svg){width=70%}
. . .
\footnotesize
```C
sorted_list sorted_list_push(sorted_list list, int val) {
element *tmp = malloc(sizeof(*tmp));
tmp->data = val;
element *crt = list;
while (NULL != crt->next && val > crt->next->data) {
crt = crt->next;
}
tmp->next = crt->next;
crt->next = tmp;
return list;
}
```
# L'extraction (1/3)
## Trois cas
1. L'élément à extraire n'est **pas** le premier élément de la liste
. . .
![Extraction d'un élément qui n'est pas le premier.](figs/sorted_list_extract_any.svg){width=70%}
. . .
\scriptsize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
if (NULL != crt && prec != crt && crt->data == val) { // glue things together
prec->next = crt->next;
free(crt);
}
return list;
}
```
# L'extraction (2/3)
2. L'élément à extraire est le premier élément de la liste
. . .
![Extraction d'un élément qui est le premier.](figs/sorted_list_extract_first.svg){width=70%}
. . .
\footnotesize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
// glue things together
if (NULL != crt && crt->data == val && prec == crt) {
list = list->next;
free(crt);
}
return list;
}
```
# L'extraction (3/3)
3. L'élément à extraire n'est **pas** dans la liste.
* La liste est vide.
* La valeur est plus grande que le dernier élément de la liste.
* La valeur est plus petite que la valeur de `crt`.
. . .
On retourne la liste inchangée.
. . .
\footnotesize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
if (NULL == crt || crt->data != val) { // val not present
return list;
}
}
```
# La recherche
```C
element* sorted_list_search(sorted_list list, int val);
```
* Retourne `NULL` si la valeur n'est pas présente (ou la liste vide).
* Retourne un pointeur vers l'élément si la valeur est présente.
. . .
```C
element* sorted_list_search(sorted_list list, int val) {
// search for element smaller than val
element* pos = sorted_list_position(list, val);
if (NULL == pos && val == list->data) {
return list; // first element contains val
} else if (NULL != pos && NULL != pos->next
&& val == pos->next->data)
{
return pos->next; // non-first element contains val
} else {
return NULL; // well... val's not here
}
}
```
# La recherche
## La fonction `sorted_list_position`
```C
element* sorted_list_position(sorted_list list, int val);
```
![Trois exemples de retour de la fonction `sorted_list_position()`.](figs/sorted_list_position.svg)
# La recherche
## Exercice: implémenter
```C
element* sorted_list_position(sorted_list list, int val);
```
. . .
```C
element* sorted_list_position(sorted_list list, int val) {
element* pos = list;
if (sorted_list_is_empty(list) || val <= list->data) {
pos = NULL;
} else {
while (NULL != pos->next && val > pos->next->data) {
pos = pos->next;
}
}
return pos;
}
```
# Complexité de la liste chaînée triée
## L'insertion?
. . .
$$
\mathcal{O}(N).
$$
## L'extraction?
. . .
$$
\mathcal{O}(N).
$$
## La recherche?
. . .
$$
\mathcal{O}(N).
$$
# Liste doublement chaînée
## Application: navigateur ou éditeur de texte
* Avec une liste chaînée:
* Comment implémenter les fonctions `back` et `forward` d'un navigateur?
* Comment implémenter les fonctions `undo` et `redo` d'un éditeur de texte?
. . .
Pas possible.
## Solution?
. . .
* Garder un pointeur supplémentaire sur l'élément précédent et pas seulement le
suivant.
. . .
* Cette structure de donnée est la **liste doublement chaînée** ou **doubly
linked list**.
# Liste doublement chaînée
\Huge Liste doublement chaînée
# Liste doublement chaînée
## Exercices
* Partir du dessin suivant et par **groupe de 5**
![Un schéma de liste doublement chaînée d'entiers.](figs/doubly_linked_list.svg)
1. Écrire les structures de données pour représenter la liste doublement
chaînée dont le type sera `dll` (pour
`doubly_linked_list`)
# Liste doublement chaînée
2. Écrire les fonctionnalités de création et consultation
```C
// crée la liste doublement chaînée
dll dll_create();
// retourne la valeur à la position actuelle dans la liste
int dll_value(dll list);
// la liste est-elle vide?
bool dll_is_empty(dll list);
// Est-ce que pos est le 1er élément?
bool dll_is_head(dll list);
// Est-ce que pos est le dernier élément?
bool dll_is_tail(dll list);
// data est-elle dans la liste?
bool dll_is_present(dll list, int data);
// affiche la liste
void dll_print(dll list);
```
# Liste doublement chaînée
3. Écrire les fonctionnalités de manipulation
```C
// déplace pos au début de la liste
dll dll_move_to_head(dll list);
// déplace pos à la position suivante dans la liste
dll dll_next(dll list);
// déplace pos à la position précédente dans la liste
dll dll_prev(dll list);
```
# Liste doublement chaînée
4. Écrire les fonctionnalités d'insertion
```C
// insertion de data dans l'élément après pos
dll dll_insert_after(dll list, int data);
// insertion de data en tête de liste
dll dll_push(dll list, int data);
```
5. Écrire les fonctionnalités d'extraction
```C
// extraction de la valeur se trouvant dans l'élément pos
// l'élément pos est libéré
int dll_extract(dll *list);
// extrait la donnée en tête de liste
int dll_pop(dll *list);
// vide la liste
void dll_destroy(dll *list);
```
---
title: "Liste triée, liste doublement chaînée"
date: "2025-01-06"
---
# Les listes triées
## Quel but?
* Permet de retrouver rapidement un élément.
* Utile pour la recherche de plus court chemin dans des graphes.
* Ordonnancement de processus par degré de priorité.
## Comment?
* Les implémentations les plus efficaces se basent sur les tableaux.
* Possibles aussi avec des listes chaînées.
# Les listes triées
\footnotesize
## Quelle structure de données dans notre cas?
Une liste chaînée bien sûr (oui c'est pour vous entraîner)!
```C
typedef struct _element { // chaque élément
int data;
struct _element *next;
} element;
typedef element* sorted_list; // la liste
```
## Fonctionnalités
```C
// insertion de val
sorted_list sorted_list_push(sorted_list list, int val);
// la liste est-elle vide?
bool sorted_list_is_empty(sorted_list list); // list == NULL
// extraction de val (il disparaît)
sorted_list sorted_list_extract(sorted_list list, int val);
// rechercher un élément et le retourner
element* sorted_list_search(sorted_list list, int val);
```
# L'insertion (1/3)
## Trois cas
1. La liste est vide.
. . .
![Insertion dans une liste vide, `list == NULL`.](figs/sorted_list_insert_one.svg){width=30%}
. . .
```C
sorted_list sorted_list_push(sorted_list list, int val) {
if (sorted_list_is_empty(list)) {
list = malloc(sizeof(*list));
list->data = val;
list->next = NULL;
return list;
}
}
```
# L'insertion (2/3)
2. L'insertion se fait en première position.
. . .
![Insertion en tête de liste, `list->data >=
val`.](figs/sorted_list_insert_first.svg){width=80%}
. . .
```C
sorted_list sorted_list_push(sorted_list list, int val) {
if (list->data >= val) {
element *tmp = malloc(sizeof(*tmp));
tmp->data = val;
tmp->next = list;
list = tmp;
return list;
}
}
```
# L'insertion (3/3)
3. L'insertion se fait sur une autre position que la première.
. . .
![Insertion sur une autre position, list->data < val.](figs/sorted_list_insert_any.svg){width=70%}
. . .
\footnotesize
```C
sorted_list sorted_list_push(sorted_list list, int val) {
element *tmp = malloc(sizeof(*tmp));
tmp->data = val;
element *crt = list;
while (NULL != crt->next && val > crt->next->data) {
crt = crt->next;
}
tmp->next = crt->next;
crt->next = tmp;
return list;
}
```
# L'extraction (1/3)
## Trois cas
1. L'élément à extraire n'est **pas** le premier élément de la liste
. . .
![Extraction d'un élément qui n'est pas le premier.](figs/sorted_list_extract_any.svg){width=70%}
. . .
\scriptsize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
if (NULL != crt && prec != crt && crt->data == val) { // glue things together
prec->next = crt->next;
free(crt);
}
return list;
}
```
# L'extraction (2/3)
2. L'élément à extraire est le premier élément de la liste
. . .
![Extraction d'un élément qui est le premier.](figs/sorted_list_extract_first.svg){width=70%}
. . .
\footnotesize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
// glue things together
if (NULL != crt && crt->data == val && prec == crt) {
list = list->next;
free(crt);
}
return list;
}
```
# L'extraction (3/3)
3. L'élément à extraire n'est **pas** dans la liste.
* La liste est vide.
* La valeur est plus grande que le dernier élément de la liste.
* La valeur est plus petite que la valeur de `crt`.
. . .
On retourne la liste inchangée.
. . .
\footnotesize
```C
sorted_list sorted_list_extract(sorted_list list, int val) {
element *prec = *crt = list; // needed to glue elements together
while (NULL != crt && val > crt->data) {
prec = crt;
crt = crt->next;
}
if (NULL == crt || crt->data != val) { // val not present
return list;
}
}
```
# La recherche
```C
element* sorted_list_search(sorted_list list, int val);
```
* Retourne `NULL` si la valeur n'est pas présente (ou la liste vide).
* Retourne un pointeur vers l'élément si la valeur est présente.
. . .
```C
element* sorted_list_search(sorted_list list, int val) {
// search for element smaller than val
element* pos = sorted_list_position(list, val);
if (NULL == pos && val == list->data) {
return list; // first element contains val
} else if (NULL != pos && NULL != pos->next
&& val == pos->next->data)
{
return pos->next; // non-first element contains val
} else {
return NULL; // well... val's not here
}
}
```
# La recherche
## La fonction `sorted_list_position`
```C
element* sorted_list_position(sorted_list list, int val);
```
![Trois exemples de retour de la fonction `sorted_list_position()`.](figs/sorted_list_position.svg)
# La recherche
## Exercice: implémenter
```C
element* sorted_list_position(sorted_list list, int val);
```
. . .
```C
element* sorted_list_position(sorted_list list, int val) {
element* pos = list;
if (sorted_list_is_empty(list) || val <= list->data) {
pos = NULL;
} else {
while (NULL != pos->next && val > pos->next->data) {
pos = pos->next;
}
}
return pos;
}
```
# Complexité de la liste chaînée triée
## L'insertion?
. . .
$$
\mathcal{O}(N).
$$
## L'extraction?
. . .
$$
\mathcal{O}(N).
$$
## La recherche?
. . .
$$
\mathcal{O}(N).
$$
# Liste doublement chaînée
## Application: navigateur ou éditeur de texte
* Avec une liste chaînée:
* Comment implémenter les fonctions `back` et `forward` d'un navigateur?
* Comment implémenter les fonctions `undo` et `redo` d'un éditeur de texte?
. . .
Pas possible.
## Solution?
. . .
* Garder un pointeur supplémentaire sur l'élément précédent et pas seulement le
suivant.
. . .
* Cette structure de donnée est la **liste doublement chaînée** ou **doubly
linked list**.
# Liste doublement chaînée
\Huge Liste doublement chaînée
# Liste doublement chaînée
## Exercices
* Partir du dessin suivant et par **groupe de 5**
![Un schéma de liste doublement chaînée d'entiers.](figs/doubly_linked_list.svg)
1. Écrire les structures de données pour représenter la liste doublement
chaînée dont le type sera `dll` (pour
`doubly_linked_list`)
# Liste doublement chaînée
2. Écrire les fonctionnalités de création et consultation
```C
// crée la liste doublement chaînée
dll dll_create();
// retourne la valeur à la position actuelle dans la liste
int dll_value(dll list);
// la liste est-elle vide?
bool dll_is_empty(dll list);
// Est-ce que pos est le 1er élément?
bool dll_is_head(dll list);
// Est-ce que pos est le dernier élément?
bool dll_is_tail(dll list);
// data est-elle dans la liste?
bool dll_is_present(dll list, int data);
// affiche la liste
void dll_print(dll list);
```
# Liste doublement chaînée
3. Écrire les fonctionnalités de manipulation
```C
// déplace pos au début de la liste
dll dll_move_to_head(dll list);
// déplace pos à la position suivante dans la liste
dll dll_next(dll list);
// déplace pos à la position précédente dans la liste
dll dll_prev(dll list);
```
# Liste doublement chaînée
4. Écrire les fonctionnalités d'insertion
```C
// insertion de data dans l'élément après pos
dll dll_insert_after(dll list, int data);
// insertion de data en tête de liste
dll dll_push(dll list, int data);
```
5. Écrire les fonctionnalités d'extraction
```C
// extraction de la valeur se trouvant dans l'élément pos
// l'élément pos est libéré
int dll_extract(dll *list);
// extrait la donnée en tête de liste
int dll_pop(dll *list);
// vide la liste
void dll_destroy(dll *list);
```
---
title: "Tables de hachage"
date: "2025-02-21"
---
# Les tables de hachage
\Huge Les tables de hachage
# Tableau vs Table
## Tableau
* Chaque élément (ou valeur) est lié à un indice (la case du tableau).
```C
annuaire tab[2] = {
"+41 22 123 45 67", "+41 22 234 56 78", ...
};
tab[1] == "+41 22 123 45 67";
```
## Table
* Chaque élément (ou valeur) est lié à une clé.
```C
annuaire tab = {
// Clé , Valeur
"Paul", "+41 22 123 45 67",
"Orestis", "+41 22 234 56 78",
};
tab["Paul"] == "+41 22 123 45 67";
tab["Orestis"] == "+41 22 234 56 78";
```
# Table
## Définition
Structure de données abstraite où chaque *valeur* (ou élément) est associée à une *clé* (ou
argument).
On parle de paires *clé-valeur* (*key-value pairs*).
## Donnez des exemples de telles paires
. . .
* Annuaire (nom-téléphone),
* Catalogue (objet-prix),
* Table de valeur fonctions (nombre-nombre),
* Index (nombre-page)
* ...
# Table
## Opérations principales sur les tables
* Insertion d'élément (`insert(clé, valeur)`{.C}), insère la paire `clé-valeur`
* Consultation (`get(clé)`{.C}), retourne la `valeur` correspondant à `clé`
* Suppression (`remove(clé)`{.C}), supprime la paire `clé-valeur`
## Structure de données / implémentation
Efficacité dépend de différents paramètres:
* taille (nombre de clé-valeurs maximal),
* fréquence d'utilisation (insertion, consultation, suppression),
* données triées/non-triées,
* ...
# Consultation séquentielle (`sequential_get`)
## Séquentielle
* table représentée par un (petit) tableau ou liste chaînée,
* types: `key_t` et `value_t` quelconques, et `key_value_t`
```C
typedef struct {
key_t key;
value_t value;
} key_value_t;
```
* on recherche l'existence de la clé séquentiellement dans le tableau, on
retourne la valeur.
# Consultation séquentielle (`sequential_get`)
## Implémentation? Une idée?
. . .
```C
bool sequential_get(int n, key_value_t table[n], key_t key,
value_t *value)
{
int pos = n - 1;
while (pos >= 0) {
if (key == table[pos].key) {
*value = table[pos].value;
return true;
}
pos--;
}
return false;
}
```
. . .
## Inconvénient?
# Consultation séquentielle (`sequential_get`)
## Exercice: implémenter la même fonction avec une liste chaînée
Poster le résultat sur matrix.
# Consultation dichotomique (`binary_get`)
## Dichotomique
* table représentée par un (petit) tableau trié par les clés,
* types: `key_t` et `value_t` quelconques, et `key_value_t`
* on recherche l'existence de la clé par dichotomie dans le tableau, on
retourne la valeur,
* les clés possèdent la notion d'ordre (`<, >, =` sont définis).
# Consultation dichotomique (`binary_get`)
\footnotesize
## Implémentation? Une idée?
. . .
```C
bool binary_get1(int n, key_value_t table[n], key_t key, value_t *value) {
int top = n - 1, bottom = 0;
while (top > bottom) {
int middle = (top + bottom) / 2;
if (key > table[middle].key) {
bottom = middle+1;
} else {
top = middle;
}
}
if (key == table[top].key) {
*value = table[top].value;
return true;
} else {
return false;
}
}
```
# Consultation dichotomique (`binary_get`)
\footnotesize
## Autre implémentation
```C
bool binary_get2(int n, key_value_t table[n], key_t key, value_t *value) {
int top = n - 1, bottom = 0;
while (true) {
int middle = (top + bottom) / 2;
if (key > table[middle].key) {
bottom = middle + 1;
} else if (key < table[middle].key) {
top = middle;
} else {
*value = table[middle].value;
return true;
}
if (top < bottom) {
break;
}
}
return false;
}
```
## Quelle est la différence avec le code précédent?
# Transformation de clé (hashing)
\footnotesize
## Problématique: Numéro AVS (13 chiffres)
* Format: 106.3123.8492.13
```
Numéro AVS | Nom
0000000000000 | -------
... | ...
1063123849213 | Paul
... | ...
3066713878328 | Orestis
... | ...
9999999999999 | -------
```
## Quelle est la clé? Quelle est la valeur?
. . .
* Clé: Numéro AVS, Valeur: Nom.
## Nombre de clés? Nombre de citoyens? Rapport?
. . .
* $10^{13}$ clés, $10^7$ citoyens, $10^{-5}$ ($10^{-3}\%$ de la table est
occupée) $\Rightarrow$ *inefficace*.
* Pire: $10^{13}$ entrées ne rentre pas dans la mémoire d'un
ordinateur.
# Transformation de clé (hashing)
## Problématique 2: Identificateurs d'un programme
* Format: 8 caractères (simplification)
```
Identificateur | Adresse
aaaaaaaa | -------
... | ...
resultat | 3aeff
compteur | 4fedc
... | ...
zzzzzzzz | -------
```
## Quelle est la clé? Quelle est la valeur?
. . .
* Clé: Identificateur, Valeur: Adresse.
## Nombre de clés? Nombre d'identificateur d'un programme? Rapport?
. . .
* $26^{8}\sim 2\cdot 10^{11}$ clés, $2000$ identificateurs, $10^{-8}$ ($10^{-6}\%$ de la table est
occupée) $\Rightarrow$ *un peu inefficace*.
# Fonctions de transformation de clé (hash functions)
* La table est représentée avec un tableau.
* La taille du tableau est beaucoup plus petit que le nombre de clés.
* On produit un indice du tableau à partir d'une clé:
$$
h(key) = n,\quad n\in\mathbb{N}.
$$
En français: on transforme `key` en nombre entier qui sera l'indice dans le
tableau correspondant à `key`.
## La fonction de hash
* La taille du domaine des clés est beaucoup plus grand que le domaine des
indices.
* Plusieurs indices peuvent correspondre à la **même clé**:
* Il faut traiter les **collisions**.
* L'ensemble des indices doit être plus petit ou égal à la taille de la table.
## Une bonne fonction de hash
* Distribue uniformément les clés sur l'ensemble des indices.
# Fonctions de transformation de clés: exemples
## Méthode par troncature
\begin{align*}
&h: [0,9999]\rightarrow [0,9]\\
&h(key)=\mbox{troisième chiffre du nombre.}
\end{align*}
```
Key | Index
0003 | 0
1123 | 2 \
1234 | 3 |-> collision.
1224 | 2 /
1264 | 6
```
## Quelle est la taille de la table?
. . .
C'est bien dix oui.
# Fonctions de transformation de clés: exemples
## Méthode par découpage
Taille de l'index: 3 chiffres.
```
key = 321 991 24 -> 321
991
+ 24
----
1336 -> index = 336
```
## Devinez l'algorithme?
. . .
On part de la gauche:
1. On découpe la clé en tranche de longueur égale à celle de l'index.
2. On somme les nombres obtenus.
3. On tronque à la longueur de l'index.
# Fonctions de transformation de clés: exemples
## Méthode multiplicative
Taille de l'index: 2 chiffres.
```
key = 5486 -> key^2 = 30096196 -> index = 96
```
On prend le carré de la clé et on garde les chiffres du milieu du résultat.
# Fonctions de transformation de clés: exemples
## Méthode par division modulo
Taille de l'index: `N` chiffres.
```
h(key) = key % N.
```
## Quelle doit être la taille de la table?
. . .
Oui comme vous le pensiez au moins `N`.
# Traitement des collisions
## La collision
```
key1 != key2, h(key1) == h(key2)
```
## Traitement (une idée?)
. . .
* La première clé occupe la place prévue dans le tableau.
* La deuxième (troisième, etc.) est placée ailleurs de façon **déterministe**.
Dans ce qui suit la taille de la table est `table_size`.
# La méthode séquentielle
\footnotesize
## Comment ça marche?
* Quand l'index est déjà occupé on regarde sur la position suivante, jusqu'à en
trouver une libre.
```C
index = h(key);
while (table[index].state == OCCUPIED && table[index].key != key) {
index = (index + 1) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
## Problème?
. . .
* Regroupement d'éléments (clustering).
# Méthode linéaire
\footnotesize
## Comment ça marche?
* Comme la méthode séquentielle mais on "saute" de `k`.
```C
index = h(key);
while (table[index].state == OCCUPIED && table[index].key != key) {
index = (index + k) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
## Quelle valeur de `k` éviter?
. . .
* Une valeur où `table_size` est multiple de `k`.
Cette méthode répartit mieux les regroupements au travers de la table.
# Méthode du double hashing
\footnotesize
## Comment ça marche?
* Comme la méthode linéaire, mais `k = h2(key)` (variable).
```C
index = h(key);
while (table[index].state == OCCUPIED && table[index].key != key) {
index = (index + h2(k)) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
## Quelle propriété doit avoir `h2`?
## Exemple
```C
h2(key) = (table_size - 2) - key % (table_size -2)
```
# Méthode pseudo-aléatoire
\footnotesize
## Comment ça marche?
* Comme la méthode linéaire mais on génère `k` pseudo-aléatoirement.
```C
index = h(key);
while (table[index].state == OCCUPIED && table[index].key != key) {
index = (index + random_number) % table_size;
}
table[index].key = key;
table[index].state = OCCUPIED;
```
## Comment s'assurer qu'on va bien retrouver la bonne clé?
. . .
* Le germe (seed) de la séquence pseudo-aléatoire doit être le même.
* Le germe à choisir est l'index retourné par `h(key)`.
```C
srand(h(key));
while {
random_number = rand();
}
```
# Méthode quadratique
* La fonction des indices de collision est de degré 2.
* Soit $J_0=h(key)$, les indices de collision se construisent comme:
```C
J_i = J_0 + i^2 % table_size, i > 0,
J_0 = 100, J_1 = 101, J_2 = 104, J_3 = 109, ...
```
## Problème possible?
. . .
* Calculer le carré peut-être "lent".
* En fait on peut ruser un peu.
# Méthode quadratique
\footnotesize
```C
J_i = J_0 + i^2 % table_size, i > 0,
J_0 = 100
\
d_0 = 1
/ \
J_1 = 101 Delta = 2
\ /
d_1 = 3
/ \
J_2 = 104 Delta = 2
\ /
d_2 = 5
/ \
J_3 = 109 Delta = 2
\ /
d_3 = 7
/
J_4 = 116
--------------------------------------
J_{i+1} = J_i + d_i,
d_{i+1} = d_i + Delta, d_0 = 1, i > 0.
```
# Méthode de chaînage
## Comment ça marche?
* Chaque index de la table contient un pointeur vers une liste chaînée
contenant les paires clés-valeurs.
## Un petit dessin
```
```
# Méthode de chaînage
## Exemple
On hash avec la fonction `h(key) = key % 11` (`key` est le numéro de la lettre
de l'alphabet)
```
U | N | E | X | E | M | P | L | E | D | E | T | A | B | L | E
10 | 3 | 5 | 2 | 5 | 2 | 5 | 1 | 5 | 4 | 5 | 9 | 1 | 2 | 1 | 5
```
## Comment on représente ça? (à vous)
. . .
![La méthode de chaînage](figs/fig_hash.png){width=80%}
# Méthode de chaînage
Avantages:
* Si les clés sont grandes l'économie de place est importante (les places vides
sont `NULL`).
* La gestion des collisions est conceptuellement simple.
* Pas de problème de regroupement (clustering).
# Exercice 1
* Construire une table à partir de la liste de clés suivante:
```
R, E, C, O, U, P, A, N, T
```
* On suppose que la table est initialement vide, de taille $n = 13$.
* Utiliser la fonction $h1(k)= k \mod 13$ où k est la $k$-ème lettre de l'alphabet et un traitement séquentiel des collisions.
# Exercice 2
* Reprendre l'exercice 1 et utiliser la technique de double hachage pour traiter
les collisions avec
\begin{align*}
h_1(k)&=k\mod 13,\\
h_2(k)&=1+(k\mod 11).
\end{align*}
* La fonction de hachage est donc $h(k)=(h(k)+h_2(k)) \% 13$ en cas de
collision.
# Exercice 3
* Stocker les numéros de téléphones internes d'une entreprise suivants dans un
tableau de 10 positions.
* Les numéros sont compris entre 100 et 299.
* Soit $N$ le numéro de téléphone, la fonction de hachage est
$$
h(N)=N\mod 10.
$$
* La fonction de gestion des collisions est
$$
C_1(N,i)=(h(N)+3\cdot i)\mod 10.
$$
* Placer 145, 167, 110, 175, 210, 215 (mettre son état à occupé).
* Supprimer 175 (rechercher 175, et mettre son état à supprimé).
* Rechercher 35.
* Les cases ni supprimées, ni occupées sont vides.
* Expliquer se qui se passe si on utilise?
$$
C_1(N,i)=(h(N)+5\cdot i)\mod 10.
$$
---
title: "Fin des tables de hachages et arbres"
date: "2025-02-28"
---
# Rappel
* Qu'est-ce qu'une table de hachage?
. . .
* Structure de données abstraite où chaque *valeur* (ou élément) est associée à une *clé* (ou argument).
* Quelles sont les fonctions typiques définies sur les tables?
. . .
* Insertion, consultation, suppression.
```C
void insert(table, key, value)
value get(table, key)
value remove(table, key)
```
* Comment fait-on le lien entre une clé et une valeur dans le tableau?
. . .
* On hache!
# Exercice 2
* Reprendre l'exercice 1 et utiliser la technique de double hachage pour traiter
les collisions avec
\begin{align*}
h_1(k)&=k\mod 13,\\
h_2(k)&=1+(k\mod 11).
\end{align*}
* En cas de collision, on fait un saut de $h_2(k)$, c.-à-d. $$index = (index + h_2(k)) \mod 13.$$
# Exercice 3
* Stocker les numéros de téléphones internes d'une entreprise dans un
tableau de 10 positions.
* Les numéros sont compris entre 100 et 299.
* Soit $N$ le numéro de téléphone, la fonction de hachage est
$$
h(N)=N\mod 10.
$$
* La fonction de gestion des collisions est
$$
C_1(N,i)=(h(N)+3\cdot i)\mod 10
$$
où $i$ compte les collisions.
* Placer 145, 167, 110, 175, 210, 215 (mettre son état à occupé).
* Supprimer 175 (rechercher 175, et mettre son état à supprimé).
* Rechercher 35.
* Les cases ni supprimées, ni occupées sont vides.
* Expliquer se qui se passe si on utilise?
$$
C_1(N,i)=(h(N)+5\cdot i)\mod 10.
$$
# Préambule
\small
* Ici, on ne considère pas le cas du chaînage en cas de collisions.
* L'insertion est construite avec une forme du type
```C
index = h(key);
while (table[index].state == OCCUPIED
&& table[index].key != key) {
index = (index + k) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
\normalsize
* Gestion de l'état d'une case *explicite*
```C
typedef enum {EMPTY, OCCUPIED, DELETED} state;
```
# L'insertion
## Pseudocode?
. . .
```C
rien insertion(table, clé, valeur) {
index = hash(clé)
index =
tant que état(table[index]) == occupé
et clé(table[index]) != clé:
index = rehash(clé)
état(table[index]) = occupé
table[index] = valeur
}
```
# La suppression
## Pseudocode?
. . .
```C
valeur suppression(table, clé):
index = hash(clé)
tant que état(table[index]) != vide:
si état(table[index]) == occupé
et clé(table[index]) == clé:
état(table[index]) = supprimé
sinon
index = rehash(clé)
}
```
# La recherche
## Pseudocode?
. . .
```C
booléen recherche(table, clé) {
index = hash(clé)
tant que état(table[index]) != vide:
si état(table[index]) == occupé
et clé(table[index]) == clé:
retourner vrai
sinon
index = rehash
retourner faux
}
```
# Écrivons le code!
* Mais avant:
* Quelles sont les structures de données dont nous avons besoin?
* Y a-t-il des fonctions auxiliaires à écrire?
* Écrire les signatures des fonctions.
. . .
## Structures de données
\footnotesize
. . .
```C
typedef enum {empty, deleted, occupied};
typedef ... key_t;
typedef ... value_t;
typedef struct _cell_t {
key_t key;
value_t value;
state_t state;
} cell_t;
typedef struct _hm {
cell_t *table;
int capacity;
int size;
} hm;
```
# Écrivons le code!
## Fonctions auxiliaires
. . .
```C
static int hash(key_t key);
static int rehash(int index, key_t key);
static int find_index(hm h, key_t key);
```
## Signature de l'API
. . .
```C
void hm_init(hm *h, int capacity);
void hm_destroy(hm *h);
bool hm_set(hm *h, key_t key, value_t *value);
bool hm_get(hm h, key_t key, value_t *value);
bool hm_remove(hm *h, key_t key, value_t *value);
bool hm_search(hm h, key_t key);
void hm_print(hm h);
```
# Live code session!
0. Offered to you by ProtonVPN[^1]!
. . .
1. Like the video.
2. Subscribe to the channel.
3. Use our one time voucher for ProtonVPN: `PAULISAWESOME`.
4. Consider donating on our patreon.
[^1]: The fastest way to connect to BBB!
# Les arbres
\Huge Les arbres
# Les arbres: définition
"Un arbre est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent."
. . .
**Santé!**
## Plus sérieusement
* Ensemble de **nœuds** et d'**arêtes** (graphe).
* Les arêtes relient les nœuds entre eux, mais pas n'importe comment: chaque
nœud a au plus un **parent**.
* Le seul nœud sans parent est la **racine**.
* Chaque nœud a un nombre fini d'**enfants**.
* La hiérarchie des nœuds rend les arêtes **orientées** (parent -> enfants), et empêche les
**cycles** (acyclique, orienté).
* La **feuille** ou **nœud terminal** est un nœud sans enfants.
* Le **niveau** est 1 à la racine et **niveau+1** pour les enfants.
* Le **degré** d'un nœud est le nombre de enfants du nœud.
. . .
* Chaque nœud est un arbre en lui même.
* La **récursivité** sera très utile!
# Arbre ou pas arbre?
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
1-->2;
1-->3;
3-->2;
3-->4;
3-->5;
```
::::
. . .
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
1-->2;
1-->3;
3-->4;
3-->5;
3-->6;
```
::::
:::
# Arbre ou pas arbre?
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
1-->2;
1-->3;
3-->4;
3-->5;
3-->6;
6-->7;
7-->3;
```
::::
. . .
:::: column
```{.mermaid format=pdf width=300 loc=figs/}
graph TD;
1;
```
::::
:::
# Arbre ou pas arbre?
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
1---2;
1---3;
3---4;
3---5;
```
::::
. . .
:::: column
```{.mermaid format=pdf width=300 loc=figs/}
graph BT;
1-->2;
1-->3;
3-->4;
3-->5;
3-->6;
```
::::
:::
# Degré et niveau
* Illustration du degré (nombre d'enfants) et du niveau (profondeur)
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
1[degré 2]-->2[degré 0];
1-->3[degré 3];
3-->4[degré 0];
3-->5[degré 0];
3-->6[degré 0];
```
::::
. . .
:::: column
```{.mermaid format=pdf width=300 loc=figs/}
graph TD;
1[niveau 1]-->2[niveau 2];
1-->3[niveau 2];
3-->4[niveau 3];
3-->5[niveau 3];
3-->6[niveau 3];
```
::::
:::
* Les nœuds de degré 0 sont des feuilles.
# Application: recherche rapide
## Pouvez-vous construire un arbre pour résoudre le nombre secret?
. . .
* Le nombre secret ou la recherche dichotomique (nombre entre 0 et 10).
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
5-->|<|2;
5-->|>|7;
7-->|>|8;
7-->|<|6;
8-->|>|9;
9-->|>|10;
2-->|<|1;
2-->|>|3;
3-->|>|4;
1-->|<|0;
```
::::
:::: column
**Question:** Quelle est la complexité pour trouver un nombre?
::::
:::
# Autres représentations
* Botanique
* **Exercice:** Ajouter les degrés/niveaux et feuilles
```{.mermaid width=250 format=pdf loc=figs/}
graph TD;
A-->B;
A-->C;
B-->D;
B-->E;
B-->F;
F-->I;
F-->J;
C-->G;
C-->H;
H-->K;
```
# Autres représentations
* Ensembliste
::: columns
:::: column
```{.mermaid width=300 format=pdf loc=figs/}
graph TD;
A-->B;
A-->C;
B-->D;
B-->E;
B-->F;
F-->I;
F-->J;
C-->G;
C-->H;
H-->K;
```
::::
. . .
:::: column
![](figs/ensemble.svg)
::::
:::
# Autres représentations
* Liste
::: columns
:::: column
```{.mermaid width=400 format=pdf loc=figs/}
graph TD;
A-->B;
A-->C;
B-->D;
B-->E;
B-->F;
F-->I;
F-->J;
C-->G;
C-->H;
H-->K;
```
::::
. . .
:::: column
```
(A
(B
(D)
(E)
(F
(I)
(J)
)
)
(C
(G)
(H
(K)
)
)
)
```
::::
:::
# Autres représentation
* Par niveau
::: columns
:::: column
```{.mermaid width=400 format=pdf loc=figs/}
graph TD;
A-->B;
A-->C;
B-->D;
B-->E;
B-->F;
F-->I;
F-->J;
C-->G;
C-->H;
H-->K;
```
::::
. . .
:::: column
```
1 2 3 4
-------------------------
A
B
D
E
F
I
J
C
G
H
K
```
::::
:::
---
title: "Arbres binaires"
date: "2025-03-07"
---
# Les arbres binaires
\Huge Les arbres binaires
# L'arbre binaire
* Structure de données abstraite,
* Chaque nœud a au plus deux enfants: gauche et droite,
* Chaque enfant est un arbre.
## Comment représenteriez vous une telle structure?
. . .
```C
<R, G, D>
R: racine
G: sous-arbre gauche
D: sous-arbre droite
```
## Comment cela s'écrirait en C?
. . .
```C
typedef struct _node {
contenu info;
struct _node *left, *right;
} node;
```
# L'arbre binaire
\footnotesize
## Que se passerait-il avec
```C
typedef struct _node {
int info;
struct _node left, right;
} node;
```
. . .
* On ne sait pas quelle est la taille de node, on ne peut pas l'allouer!
## Interface minimale
* Qu'y mettriez vous?
. . .
```C
NULL -> arbre (vide)
<n, arbre, arbre> -> arbre
visiter(arbre) -> nœud (la racine de l'arbre)
gauche(arbre) -> arbre (sous-arbre de gauche)
droite(arbre) -> arbre (sous-arbre de droite)
```
* Les autres opérations (insertion, parcours, etc) dépendent de ce qu'on stocke
dans l'arbre.
# Exemple d'arbre binaire
* Représentez `(c - a * b) * (d + e / f)` à l'aide d'un arbre binaire (matrix)
. . .
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
A[*]-->B[-];
B-->C[c];
B-->D[*];
D-->E[a];
D-->F[b];
A-->G[+];
G-->H[d];
G-->I["/"];
I-->J[e];
I-->K[f];
```
::::
:::: column
## Remarques
* L'arbre est **hétérogène**: le genre d'info n'est pas le même sur chaque nœud
(opérateur, opérande).
* Les feuilles contiennent les opérandes.
* Les nœuds internes contiennent les opérateurs.
::::
:::
# Parcours d'arbres binaires
* Appliquer une opération à tous les nœuds de l'arbre,
* Nécessité de **parcourir** l'arbre,
* Utiliser uniquement l'interface: visiter, gauche,
droite.
## Une idée de comment parcourir cet arbre?
* 3 parcours (R: Racine, G: sous-arbre gauche, D: sous-arbre droit):
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
A[*]-->B[-];
B-->C[c];
B-->D[*];
D-->E[a];
D-->F[b];
A-->G[+];
G-->H[d];
G-->I["/"];
I-->J[e];
I-->K[f];
```
::::
:::: column
1. Parcours **préfixe** (R, G, D),
2. Parcours **infixe** (G, R, D),
3. Parcours **postfixe** (G, D, R).
::::
:::
# Le parcours infixe (G, R, D)
* Gauche, Racine, Droite:
1. On descend dans l'arbre de gauche tant qu'il n'est pas vide.
2. On visite la racine du sous arbre.
3. On descend dans le sous-arbre de droite (s'il n'est pas vide).
4. On recommence.
. . .
## Incompréhensible?
* La récursivité, c'est la vie.
```
parcours_infixe(arbre a)
si est_pas_vide(gauche(a))
parcours_infixe(gauche(a))
visiter(a)
si est_pas_vide(droite(a))
parcours_infixe(droite(a))
```
# Graphiquement (dessinons)
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
A[*]-->B[-];
B-->C[c];
B-->D[*];
D-->E[a];
D-->F[b];
A-->G[+];
G-->H[d];
G-->I["/"];
I-->J[e];
I-->K[f];
```
::::
:::: column
```
parcours_infixe(arbre a)
si est_pas_vide(gauche(a))
parcours_infixe(gauche(a))
visiter(a)
si est_pas_vide(droite(a))
parcours_infixe(droite(a))
```
::::
:::
# Graphiquement (`mermaid` c'est super)
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
A[*]-->B[-];
A[*]-.->|1|B[-];
B-->C[c];
B-.->|2|C[c];
C-.->|3|B;
B-->D[*];
B-.->|4|D;
D-->E[a];
D-.->|5|E;
E-.->|6|D;
D-->F[b];
D-.->|7|F;
F-.->|8|A;
A-->G[+];
A-.->|9|G;
G-->H[d];
G-.->|10|H;
H-.->|11|G;
G-->I["/"];
G-.->|12|I;
I-->J[e];
I-.->|13|J;
J-.->|14|I;
I-->K[f];
I-.->|15|K;
```
::::
:::: column
```
parcours_infixe(arbre a)
si est_pas_vide(gauche(a))
parcours_infixe(gauche(a))
visiter(a)
si est_pas_vide(droite(a))
parcours_infixe(droite(a))
```
## Remarque
Le nœud est visité à la **remontée**.
## Résultat
```
c - a * b * d + e / f
```
::::
:::
# Et en C?
## Live code
\footnotesize
. . .
```C
typedef int data;
typedef struct _node {
data info;
struct _node* left;
struct _node* right;
} node;
void tree_print(node *tree, int n) {
if (NULL != tree) {
tree_print(tree->left, n+1);
for (int i = 0; i < n; i++) {
printf(" ");
}
printf("%d\n", tree->info);
tree_print(tree->right, n+1);
}
}
```
# Question
## Avez-vous compris le fonctionnement?
. . .
## Vous en êtes sûr·e·s?
. . .
## OK, alors deux exercices:
1. Écrire le pseudo-code pour le parcours R, G, D (matrix).
2. Écrire le pseudo-code pour la parcours G, D, R (matrix).
## Rappel
```
parcours_infixe(arbre a)
si est_pas_vide(gauche(a))
parcours_infixe(gauche(a))
visiter(a)
si est_pas_vide(droite(a))
parcours_infixe(droite(a))
```
# Correction
\footnotesize
* Les deux parcours sont des modifications **triviales** de l'algorithme
infixe.
## Le parcours postfixe
```python
parcours_postfixe(arbre a)
si est_pas_vide(gauche(a))
parcours_postfixe(gauche(a))
si est_pas_vide(droite(a))
parcours_postfixe(droite(a))
visiter(a)
```
## Le parcours préfixe
```python
parcours_préfixe(arbre a)
visiter(a)
si est_pas_vide(gauche(a))
parcours_préfixe(gauche(a))
si est_pas_vide(droite(a))
parcours_préfixe(droite(a))
```
. . .
**Attention:** L'implémentation de ces fonctions en C sont **à faire** en
exercice (inspirez vous de ce qu'on a fait avant)!
# Exercice: parcours
## Comment imprimer l'arbre ci-dessous?
```
f
/
e
+
d
*
c
-
b
*
a
```
. . .
## Bravo vous avez trouvé!
* Il s'agissait du parcours D, R, G.
# Implémentation
## Vous avez 5 min pour implémenter cette fonction et la poster sur matrix!
. . .
```C
void pretty_print(node *tree, int n) {
if (NULL != tree) {
pretty_print(tree->right, n+1);
for (int i = 0; i < n; ++i) {
printf(" ");
}
printf("%d\n", tree->info);
pretty_print(tree->left, n+1);
}
}
```
# Exercice supplémentaire (sans corrigé)
Écrire le code de la fonction
```C
int depth(node *t);
```
qui retourne la profondeur maximale d'un arbre.
Indice: la profondeur à chaque niveau peut-être calculée à partir du niveau des
sous-arbres de gauche et de droite.
# La recherche dans un arbre binaire
* Les arbres binaires peuvent retrouver une information très rapidement.
* À quelle complexité? À quelle condition?
. . .
## Condition
* Le contenu de l'arbre est **ordonné** (il y a une relation d'ordre (`<`, `>`
entre les éléments).
## Complexité
* La profondeur de l'arbre (ou le $\mathcal{O}(\log_2(N))$)
. . .
## Exemple: les arbres lexicographiques
* Chaque nœud contient une information de type ordonné, la **clé**.
* Par construction, pour chaque nœud $N$:
* Toute clé du sous-arbre à gauche de $N$ est inférieure à la clé de $N$.
* Toute clé du sous-arbre à droite de $N$ est inférieure à la clé de $N$.
# Algorithme de recherche
* Retourner le nœud si la clé est trouvée dans l'arbre.
```python
tree recherche(clé, arbre)
tant_que est_non_vide(arbre)
si clé < clé(arbre)
arbre = gauche(arbre)
sinon si clé > clé(arbre)
arbre = droite(arbre)
sinon
retourne arbre
retourne NULL
```
# Algorithme de recherche, implémentation (live)
\footnotesize
. . .
```C
typedef int key_t;
typedef struct _node {
key_t key;
struct _node* left;
struct _node* right;
} node;
node *search(key_t key, node *tree) {
node *current = tree;
while (NULL != current) {
if (current->key > key) {
current = current->left;
} else if (current->key < key){
current = current->right;
} else {
return current;
}
}
return NULL;
}
```
# Exercice (5-10min)
Écrire le code de la fonction
```C
int tree_size(node *tree);
```
qui retourne le nombre total de nœuds d'un arbre et poster le résultat sur
matrix.
Indication: la taille, est 1 + le nombre de nœuds du sous-arbre de gauche
additionné au nombre de nœuds dans le sous-arbre de droite.
. . .
```C
int tree_size(node *tree) {
if (NULL == tree) {
return 0;
} else {
return 1 + tree_size(tree->left)
+ tree_size(tree->right);
}
}
```
# L'insertion dans un arbre binaire
* C'est bien joli de pouvoir faire des parcours, recherches, mais si on ne peut
pas construire l'arbre....
## Pour un arbre lexicographique
* Rechercher la position dans l'arbre où insérer.
* Créer un nœud avec la clé et le rattacher à l'arbre.
# Exemple d'insertions
* Clés uniques pour simplifier.
* Insertion de 5, 15, 10, 25, 2, -5, 12, 14, 11.
* Rappel:
* Plus petit que la clé courante => gauche,
* Plus grand que la clé courante => droite.
* Faisons le dessins ensemble
```
```
## Exercice (3min, puis matrix)
* Dessiner l'arbre en insérant 20, 30, 60, 40, 10, 15, 25, -5
# Pseudo-code d'insertion (1/4)
* Deux parties:
* Recherche le parent où se passe l'insertion.
* Ajout de l'enfant dans l'arbre.
## Recherche du parent
```
tree position(arbre, clé)
si est_non_vide(arbre)
si clé < clé(arbre)
suivant = gauche(arbre)
sinon
suivant = droite(arbre)
tant que clé(arbre) != clé && est_non_vide(suivant)
arbre = suivant
si clé < clé(arbre)
suivant = gauche(arbre)
sinon
suivant = droite(arbre)
retourne arbre
```
# Pseudo-code d'insertion (2/4)
* Deux parties:
* Recherche de la position.
* Ajout dans l'arbre.
## Ajout de l'enfant
```
rien ajout(arbre, clé)
si est_vide(arbre)
arbre = nœud(clé)
sinon
si clé < clé(arbre)
gauche(arbre) = nœud(clé)
sinon si clé > clé(arbre)
droite(arbre) = nœud(clé)
sinon
retourne
```
# Code d'insertion en C
## Recherche du parent (ensemble)
. . .
```C
node *position(node *tree, key_t key) {
node * current = tree;
if (NULL != current) {
node *subtree = key > current->key
? current->right : current->left;
while (key != current->key && NULL != subtree) {
current = subtree;
subtree = key > current->key
? current->right : current->left;
}
}
return current;
}
```
# L'insertion (3/4)
* Deux parties:
* Recherche de la position.
* Ajout dans l'arbre.
## Ajout du fils (pseudo-code)
```
rien ajout(arbre, clé)
si est_vide(arbre)
arbre = nœud(clé)
sinon
arbre = position(arbre, clé)
si clé < clé(arbre)
gauche(arbre) = nœud(clé)
sinon si clé > clé(arbre)
droite(arbre) = nœud(clé)
sinon
retourne
```
# L'insertion (4/4)
## Ajout du fils (code)
\scriptsize
* 2 cas: arbre vide ou pas.
* on retourne un pointeur vers le nœud ajouté (ou `NULL`)
. . .
```C
node *add_key(node **tree, key_t key) {
node *new_node = calloc(1, sizeof(*new_node));
new_node->key = key;
if (NULL == *tree) {
*tree = new_node;
} else {
node * subtree = position(*tree, key);
if (key == subtree->key) {
return NULL;
} else {
if (key > subtree->key) {
subtree->right = new_node;
} else {
subtree->left = new_node;
}
}
}
return new_node;
}
```
# La suppression de clé
::: columns
:::: column
## Cas simples:
* le nœud est absent,
* le nœud est une feuille,
* le nœuds a un seul fils.
## Une feuille (le 19 p.ex.).
```{.mermaid format=pdf width=150 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->21
20-->19
```
::::
:::: column
## Un seul fils (le 20 p.ex.).
```{.mermaid format=pdf width=400 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->25
20-->18
25-->24
25-->30
5-->4;
5-->8;
style 18 fill:#fff,stroke:#fff,color:#fff
```
## Dans tous les cas
* Chercher le nœud à supprimer: utiliser `position()`.
::::
:::
# La suppression de clé
::: columns
:::: column
## Cas compliqué
* Le nœud à supprimer a (au moins) deux descendants (10).
```{.mermaid format=pdf width=400 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->25
20-->18
25-->24
25-->30
5-->4;
5-->8;
```
::::
:::: column
* Si on enlève 10, il se passe quoi?
. . .
* On ne peut pas juste enlever `10` et recoller...
* Proposez une solution !
. . .
## Solution
* Échange de la valeur à droite dans le sous-arbre de gauche ou ...
* de la valeur de gauche dans le sous-arbre de droite!
* Puis, on retire le nœud.
::::
:::
# Le pseudo-code de la suppression
## Pour une feuille ou absent (ensemble)
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé)
si est_vide(sous_arbre) ou clé(sous_arbre) != clé
retourne vide
sinon
si est_feuille(sous_arbre) et clé(sous_arbre) == clé
nouvelle_feuille = parent(arbre, sous_arbre)
si est_vide(nouvelle_feuille)
arbre = vide
sinon
si gauche(nouvelle_feuille) == sous_arbre
gauche(nouvelle_feuille) = vide
sinon
droite(nouvelle_feuille) = vide
retourne sous_arbre
```
# Il nous manque le code pour le `parent`
## Pseudo-code pour trouver le parent (5min -> matrix)
. . .
```
tree parent(arbre, sous_arbre)
si est_non_vide(arbre)
actuel = arbre
parent = actuel
clé = clé(sous_arbre)
faire
si (clé != clé(actuel))
parent = actuel
si clé < clé(actuel)
actuel = gauche(actuel)
sinon
actuel = droite(actuel)
sinon
retour parent
tant_que (actuel != sous_arbre)
retourne vide
```
# Le pseudo-code de la suppression
\footnotesize
## Pour un seul enfant (5min -> matrix)
. . .
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé)
si est_vide(gauche(sous_arbre)) ou est_vide(droite(sous_arbre))
parent = parent(arbre, sous_arbre)
si est_vide(gauche(sous_arbre))
si droite(parent) == sous_arbre
droite(parent) = droite(sous_arbre)
sinon
gauche(parent) = droite(sous_arbre)
sinon
si droite(parent) == sous_arbre
droite(parent) = gauche(sous_arbre)
sinon
gauche(parent) = gauche(sous_arbre)
retourne sous_arbre
```
# Le pseudo-code de la suppression
\footnotesize
## Pour au moins deux enfants (ensemble)
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé) # on revérifie pas que c'est bien la clé
si est_non_vide(gauche(sous_arbre)) et est_non_vide(droite(sous_arbre))
max_gauche = position(gauche(sous_arbre), clé)
échange(clé(max_gauche), clé(sous_arbre))
suppression(gauche(sous_arbre), clé)
```
# Exercices (poster sur matrix)
1. Écrire le pseudo-code de l'insertion purement en récursif.
. . .
```
tree insertion(arbre, clé)
si est_vide(arbre)
retourne nœud(clé)
si (clé < arbre->clé)
gauche(arbre) = insert(gauche(arbre), clé)
sinon
droite(arbre) = insert(droite(arbre), clé)
retourne arbre
```
# Exercices (poster sur matrix)
2. Écrire le pseudo-code de la recherche purement en récursif.
. . .
```
booléen recherche(arbre, clé)
si est_vide(arbre)
retourne faux // pas trouvée
si clé(arbre) == clé
retourne vrai // trouvée
si clé < clé(arbre)
retourne recherche(gauche(arbre), clé)
sinon
retourne recherche(droite(arbre), clé)
```
# Exercices (à la maison)
3. Écrire une fonction qui insère des mots dans un arbre et ensuite affiche
l'arbre.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
--- ---
title: "Introduction aux algorithmes" title: "Introduction aux algorithmes II"
date: "2023-09-26" date: "2024-09-23"
--- ---
# Rappel # Rappel
......
This diff is collapsed.
---
title: "Les B-arbres"
date: "2025-04-11"
---
# Les B-arbres
\Huge
Les B-arbres
# Les B-arbres
## Problématique
* Grands jeux de données (en 1970).
* Stockage dans un arbre, mais l'arbre ne tient pas en mémoire.
* Regrouper les sous-arbres en **pages** qui tiennent en mémoire.
## Exemple
* 100 nœuds par page et l'arbre comporte $10^6$ nœuds:
* Recherche B-arbre: $\log_{100}(10^6)=3$;
* Recherche ABR: $\log_2(10^6)=20$.
* Si on doit lire depuis le disque: $10\mathrm{ms}$ par recherche+lecture:
* $30\mathrm{ms}$ (lecture beaucoup plus rapide que recherche) vs $200\mathrm{ms}=0.2\mathrm{s}$.
## Remarques
* On ne sait pas ce que veut dire `B`: Bayer, Boeing, Balanced?
* Variante plus récente B+-arbres.
# Les B-arbres
## Illustration, arbre divisé en pages de 3 nœuds
![Arbre divisé en pages de 3 nœuds](figs/barbres_page3.png)
. . .
## Utilisation
* Bases de données (souvent très grandes donc sur le disque);
* Systèmes de fichiers.
# Les B-arbres
## Avantages
* Arbres moins profonds;
* Diminution des opérations de rééquilibrage;
* Complexité toujours en $\log(N)$;
. . .
## Définition: B-arbre d'ordre $n$
* Chaque page d'un arbre contient au plus $2\cdot n$ *clés*;
* Chaque page (excepté la racine) contient au moins $n$ clés;
* Chaque page qui contient $m$ clés contient soit:
* $0$ descendants;
* $m+1$ descendants.
* Toutes les pages terminales apparaissent au même niveau.
# Les B-arbres
## Est-ce un B-arbre?
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
## Oui!
* Dans chaque nœud les clés sont **triées**.
* Chaque page contient au plus $n$ nœuds: check;
* Chaque nœud avec $m$ clés a $m+1$ descendants;
* Toutes les feuilles apparaissent au même niveau.
# Les B-arbres
## Exemple de recherche: trouver `32`
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
* Si `C` plus petit que la 1ère clé ou plus grand que la dernière descendre.
* Sinon parcourir (par bissection ou séquentiellement) jusqu'à trouver où descendre entre 2 éléments.
# Les B-arbres
## Algorithme de recherche de la clé `C`
0. En partant de la racine.
1. Si on est dans une feuille:
* Si `C` est dans la page, retourner la page;
* Sinon c'est perdu.
2. Sinon:
* Tant que `C < clé(page)` passer à la clé suivante
* Si `C` est dans la page, retourner la page;
* Sinon descendre
# Les B-arbres
## Disclaimer
* Inspiration de <https://en.wikipedia.org/wiki/B-tree>
## Exemples d'insertion: `1`
![B-arbre d'ordre 1.](figs/barbres_1.svg)
. . .
* L'arbre est vide, on insère juste dans la première page.
# Les B-arbres
## Exemples d'insertion: `2`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_2.svg)
. . .
* La première page n'est pas pleine, on insère dans l'ordre (après 1).
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1.](figs/barbres_2.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_3.svg){width=50%}
. . .
* La page est pleine, on crée deux enfants.
* On choisit, `2`, la médiane de `1, 2, 3` et il est inséré à la racine.
* `1` descend à gauche, `3` descend à droite.
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1.](figs/barbres_3.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1. Nombre enfants 0 ou 2.](figs/barbres_4.svg){width=50%}
. . .
* On pourrait insérer à droite de `2`, mais... ça ferait 2 parents pour 2 enfants (mais `m` parents => `m+1` enfants ou `0`);
* On descend à droite (`4 > 2`);
* On insère à droite de `3`.
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_4.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_5.svg)
. . .
* On descend à droite (on ne peut pas insérer à la racine comme pour `4`);
* On dépasse la capacité de l'enfant droite;
* `4`, médiane de `3, 4, 5`, remonte à la racine;
* On crée un nouveau nœud à droite de `4`;
* La règle `m => m+1` est ok.
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_5.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_6.svg)
. . .
* `6 > 4` on descend à droite;
* `6 > 5` et on a à la place à droite, on insère.
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_6.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_7.svg){width=50%}
. . .
* `7 > 4` on descend à droite;
* `7 > 6` mais on a dépassé la capacité;
* `6` est la médiane de `5, 6, 7`, remonte à la racine;
* `5` reste à gauche, `7` à droite, mais `6` fait dépasser la capacité de la racine;
* `4` est la médiane de `2, 4, 6`, `4` remonte, `2` reste à gauche, `6` à droite.
# Les B-arbres
## L'algorithme d'insertion
0. Rechercher la feuille (la page n'a aucun enfant) où insérer;
1. Si la page n'est pas pleine insérer dans l'ordre croissant.
2. Si la page est pleine, on sépare la page en son milieu :
1. On trouve la médiane, `M`, de la page;
2. On met les éléments `< M` dans la page de gauche de `M` et les `> M` dans la page de droite de `M`;
3. `M` est insérée récursivement dans la page parent.
# Les B-arbres
## Exercice: insérer `22, 45, 50` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex1.png)
. . .
![](figs/barbres_ex2.png)
# Les B-arbres
## Exercice: insérer `5` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex2.png)
. . .
![](figs/barbres_ex3.png)
# Les B-arbres
## Exercice: insérer `32, 55, 60` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex3.png)
. . .
![](figs/barbres_ex4.png)
# Les B-arbres
## Exercice: insérer `41` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex4.png)
. . .
![](figs/barbres_ex5.png)
# Les B-arbres
## Exercice (matrix, 15min)
* Insérer 20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 8, 32, 38, 24, 45, 25, 2, 14, 28, 32, 41,
* Dans un B-arbre d'ordre 2.
# Les B-arbres
\footnotesize
## Structure de données
* Chaque page a une contrainte de remplissage, par rapport à l'ordre de l'arbre;
* Un nœud (page) est composé d'un tableau de clés/pointeurs vers les enfants;
```
P_0 | K_1 | P_1 | K_2 | .. | P_i | K_{i+1} | .. | P_{m-1} | K_m | P_m
```
* `P_0`, ..., `P_m` pointeurs vers enfants;
* `K_1`, ..., `K_m` les clés.
* Il y a `m+1` pointeurs mais `m` clés.
* Comment faire pour gérer l'insertion?
# Les B-arbres
## Faire un dessin de la structure de données (3min matrix)?
. . .
![Structure d'une page de B-arbre d'ordre 2.](figs/barbres_struct.png)
1. On veut un tableau de `P_i, K_i => struct`;
2. `K_0` va être en "trop";
3. Pour simplifier l'insertion dans une page, on ajoute un élément de plus.
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `4`?
![](figs/barbres_insert_easy.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_easy_after.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page n'est pas pleine, on a terminé.
# Les B-arbres
## L'insertion cas nœud plein, insertion `2`?
![](figs/barbres_insert_hard_before.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_during.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud plein, promotion `3`?
![](figs/barbres_insert_hard_during.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_after.svg)
# Les B-arbres
## L'insertion cas nœud plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page est pleine:
* On trouve la valeur médiane `M` de la page (quel indice?);
* On crée une nouvelle page de droite;
* On copie les valeurs à droite de `M` dans la nouvelle page;
* On promeut `M` dans la page du dessus;
* On connecte le pointeur de gauche de `M` et de droite de `M` avec l'ancienne et la nouvelle page respectivement.
# Les B-arbres
## Pseudo-code structure de données (3min, matrix)?
. . .
```C
struct page
entier ordre, nb
element tab[2*ordre + 2]
```
```C
struct element
entier clé
page pg
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
booléen est_feuille(page) // la page est elle une feuille?
entier position(page, valeur) // à quelle indice on insère?
booléen est_dans_page(page, valeur) // la valeur est dans la page
```
. . .
```C
booléen est_feuille(page)
retourne (page.tab[0].pg == vide)
entier position(page, valeur)
i = 0
tant que i < page.nb && valeur >= page.tab[i+1].clef
i += 1
retourne i
booléen est_dans_page(page, valeur)
i = position(page, valeur)
retourne (page.nb > 0 && page.tab[i].val == valeur)
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
page nouvelle_page(ordre) // créer une page
rien liberer_memoire(page) // libérer tout un arbre!
```
. . .
```C
page nouvelle_page(ordre)
page = allouer(page)
page.ordre = ordre
page.nb = 0
page.tab = allouer(2*ordre+2)
retourner page
rien liberer_memoire(page)
si est_feuille(page)
liberer(page.tab)
liberer(page)
sinon
pour fille dans page.tab
liberer_memoire(fille)
liberer(page.tab)
liberer(page)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
page recherche(page, valeur) // retourner la page contenant
// la valeur ou vide
```
. . .
```C
page recherche(page, valeur)
si est_dans_page(page, valeur)
retourne page
sinon si est_feuille(page)
retourne vide
sinon
recherche(page.tab[position(page, valeur) - 1], valeur)
```
This diff is collapsed.
This diff is collapsed.