Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
orestis.malaspin
math_tech_info
Commits
2d333bf3
Commit
2d333bf3
authored
5 years ago
by
orestis.malaspin
Browse files
Options
Downloads
Patches
Plain Diff
pdflatex put back in main
parent
a60add91
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#8429
passed
5 years ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Makefile
+1
-1
1 addition, 1 deletion
Makefile
cours.md
+1
-1
1 addition, 1 deletion
cours.md
with
2 additions
and
2 deletions
Makefile
+
1
−
1
View file @
2d333bf3
...
...
@@ -8,7 +8,7 @@ OPTIONS += --filter=pandoc-numbering
OPTIONS
+=
--filter
=
pandoc-crossref
PDFOPTIONS
=
--highlight-style
kate
PDFOPTIONS
+=
--pdf-engine
xe
latex
PDFOPTIONS
+=
--pdf-engine
pdf
latex
PDFOPTIONS
+=
--number-sections
PDFOPTIONS
+=
--template
=
./default.latex
...
...
This diff is collapsed.
Click to expand it.
cours.md
+
1
−
1
View file @
2d333bf3
...
...
@@ -1267,7 +1267,7 @@ $x\in[x^\ast-\delta,x^\ast+delta]$. Un *minimum global* est un $x^\ast$ tel que
En fait, il n'existe pas de méthode pour déterminer un minimum global, pour n'importe quelle fonction.
Nous somme assurés de le trouver, uniquement si $f$ est une fonction convexe partout ($f''(x)>0
\ \f
orall x$).
## Algorithme de
s
recherche d
'un
zéro d'une fonction
## Algorithme
s
de recherche d
es
zéro
s
d'une fonction
Comme nous venons de le voir, lors de la recherche d'un minimum, il est nécessaire de trouver le point $x^
\a
st$
où $f'(x^
\a
st)=0$. Le problème est donc de déterminer les zéros de la fonction $f'(x)$. Pour avoir un maximum de généralité,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment